login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004768
Binary expansion ends 001.
5
9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105, 113, 121, 129, 137, 145, 153, 161, 169, 177, 185, 193, 201, 209, 217, 225, 233, 241, 249, 257, 265, 273, 281, 289, 297, 305, 313, 321, 329, 337, 345, 353, 361, 369, 377, 385, 393, 401, 409, 417, 425, 433, 441, 449, 457, 465, 473, 481, 489
OFFSET
0,1
COMMENTS
Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 28 ).
FORMULA
From Reinhard Zumkeller, Oct 30 2008: (Start)
a(n) = 8*n + 9.
For n > 0: a(n) = A017077(n-1). (End)
a(n) = 2*a(n-1) - a(n-2); a(0)=9, a(1)=17. - Harvey P. Dale, May 10 2015
G.f.: (9 - x) / (1 - x)^2. - Colin Barker, Jul 04 2019
E.g.f.: exp(x)*(9 + 8*x). - Stefano Spezia, May 13 2021
MATHEMATICA
Rest[FromDigits[#, 2]&/@(Join[#, {0, 0, 1}]&/@Tuples[{0, 1}, 7])] (* or *) LinearRecurrence[{2, -1}, {9, 17}, 100] (* Harvey P. Dale, May 10 2015 *)
PROG
(Magma) [8*n + 9: n in [0..60]]; // Vincenzo Librandi, Jul 11 2011
(PARI) a(n) = 8*n+9 \\ Charles R Greathouse IV, Sep 24 2012
(PARI) Vec((9 - x) / (1 - x)^2 + O(x^50)) \\ Colin Barker, Jul 04 2019
(Python)
def a(n): return 8*n + 9
print([a(n) for n in range(61)]) # Michael S. Branicky, Sep 17 2021
CROSSREFS
Complement of A004774.
Cf. A017077.
Cf. A146302. - Reinhard Zumkeller, Oct 30 2008
Sequence in context: A346146 A143850 A017077 * A226323 A211432 A211422
KEYWORD
nonn,easy
STATUS
approved