This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A004768 Binary expansion ends 001. 5
 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105, 113, 121, 129, 137, 145, 153, 161, 169, 177, 185, 193, 201, 209, 217, 225, 233, 241, 249, 257, 265, 273, 281, 289, 297, 305, 313, 321, 329, 337, 345, 353, 361, 369, 377, 385, 393, 401, 409, 417, 425, 433, 441, 449, 457, 465, 473, 481, 489 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 28 ). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 Tanya Khovanova, Recursive Sequences William A. Stein, Dimensions of the spaces S_k(Gamma_0(N)) William A. Stein, The modular forms database Index entries for linear recurrences with constant coefficients, signature (2,-1). FORMULA From Reinhard Zumkeller, Oct 30 2008: (Start) a(n) = 8*n + 9. For n > 0: a(n) = A017077(n-1). (End) a(n) = 2*a(n-1) - a(n-2); a(0)=9, a(1)=17. - Harvey P. Dale, May 10 2015 G.f.: (9 - x) / (1 - x)^2. - Colin Barker, Jul 04 2019 MATHEMATICA Rest[FromDigits[#, 2]&/@(Join[#, {0, 0, 1}]&/@Tuples[{0, 1}, 7])] (* or *) LinearRecurrence[{2, -1}, {9, 17}, 100] (* Harvey P. Dale, May 10 2015 *) PROG (MAGMA) [8*n + 9: n in [0..60]]; // Vincenzo Librandi, Jul 11 2011 (PARI) a(n) = 8*n+9 \\ Charles R Greathouse IV, Sep 24 2012 (PARI) Vec((9 - x) / (1 - x)^2 + O(x^50)) \\ Colin Barker, Jul 04 2019 CROSSREFS Cf. A146302. - Reinhard Zumkeller, Oct 30 2008 Sequence in context: A242987 A143850 A017077 * A226323 A211432 A211422 Adjacent sequences:  A004765 A004766 A004767 * A004769 A004770 A004771 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 03:21 EDT 2019. Contains 328335 sequences. (Running on oeis4.)