login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004768 Binary expansion ends 001. 5
9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105, 113, 121, 129, 137, 145, 153, 161, 169, 177, 185, 193, 201, 209, 217, 225, 233, 241, 249, 257, 265, 273, 281, 289, 297, 305, 313, 321, 329, 337, 345, 353, 361, 369, 377, 385, 393, 401, 409, 417, 425, 433, 441, 449, 457, 465, 473, 481, 489 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 28 ).

For n>0: a(n) = A017077(n-1). [From Reinhard Zumkeller, Oct 30 2008]

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Tanya Khovanova, Recursive Sequences

William A. Stein, Dimensions of the spaces S_k(Gamma_0(N))

William A. Stein, The modular forms database

Index entries for linear recurrences with constant coefficients, signature (2,-1).

FORMULA

a(n) = 8*n + 9. [From Reinhard Zumkeller, Oct 30 2008]

a(0)=9, a(1)=17, a(n)=2*a(n-1)-a(n-2). - Harvey P. Dale, May 10 2015

MATHEMATICA

Rest[FromDigits[#, 2]&/@(Join[#, {0, 0, 1}]&/@Tuples[{0, 1}, 7])] (* or *) LinearRecurrence[{2, -1}, {9, 17}, 100] (* Harvey P. Dale, May 10 2015 *)

PROG

(MAGMA) [8*n + 9: n in [0..60]]; // Vincenzo Librandi, Jul 11 2011

(PARI) a(n) = 8*n+9 \\ Charles R Greathouse IV, Sep 24 2012

CROSSREFS

A146302. [From Reinhard Zumkeller, Oct 30 2008]

Sequence in context: A242987 A143850 A017077 * A226323 A211432 A211422

Adjacent sequences:  A004765 A004766 A004767 * A004769 A004770 A004771

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 27 19:44 EDT 2017. Contains 288790 sequences.