login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146302
a(n) = (8*n+5)*(8*n+9).
1
45, 221, 525, 957, 1517, 2205, 3021, 3965, 5037, 6237, 7565, 9021, 10605, 12317, 14157, 16125, 18221, 20445, 22797, 25277, 27885, 30621, 33485, 36477, 39597, 42845, 46221, 49725, 53357, 57117, 61005, 65021, 69165, 73437, 77837, 82365
OFFSET
0,1
COMMENTS
From Miklos Kristof, Nov 03 2008: (Start)
f(y) = y^4*(1 + y^4) = y^4 - y^8 + y^12 - y^16 + y^20 - y^24 + ...
Integral_{y} f(y) dy = y^5/5 - y^9/9 + y^13/13 - y^17/17 + y^21/21 - y^25/25 + ...
Integral_{y=0..1} f(y) dy = 1/5 - 1/9 + 1/13 - 1/17 + 1/21 - 1/25 + ...
= (9 - 5)/(5*9) + (17 - 13)/(13*17) + (25 - 21)/(21*25) + ...
= 4/(5*9) + 4/(13*17) + 4/(21*25) + ...
Integral_{y=0..1} f(y) dy = Sum_{m>=0} 4/((8*m+5)*(8*m+9))
= -(1/8)*sqrt(2)*Pi + 1 - (1/4)*sqrt(2)*log(1+sqrt(2))
= 0.13302701266008896241... (End)
FORMULA
G.f: (45 + 86*x - 3*x^2)/(1-x)^3.
E.g.f.: (45 + 176*x + 64*x^2)*exp(x).
a(n) = A004770(n) * A004768(n). - Reinhard Zumkeller, Oct 30 2008
MAPLE
seq((8*m+5)*(8*m+9), m=0..40); # Miklos Kristof, Nov 03 2008
MATHEMATICA
Table[(8n+5)(8n+9), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {45, 221, 525}, 40] (* Harvey P. Dale, Oct 10 2015 *)
PROG
(PARI) a(n)=(8*n+5)*(8*n+9) \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Sequence in context: A158634 A091197 A184539 * A203835 A087442 A334035
KEYWORD
nonn,easy
AUTHOR
Miklos Kristof, Oct 29 2008
STATUS
approved