

A087442


Numbers n such that n is not the power of a prime and such that for every prime divisor p of n, p1 divides n1.


5



45, 225, 325, 405, 561, 637, 891, 1105, 1125, 1225, 1377, 1729, 2025, 2465, 2821, 3321, 3645, 3751, 3825, 4225, 4961, 5589, 5625, 6517, 6525, 6601, 7381, 8125, 8281, 8625, 8911, 9801, 10125, 10585, 10625, 12025, 13357, 13833, 14161, 15841, 15925
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Weak Carmichael numbers that are not prime powers [Mestrovic]  N. J. A. Sloane, Aug 25 2013
The values of this sequence together with the set of prime powers (A000961) forms the sequence A087441.


LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000
Romeo Meštrović, Generalizations of Carmichael numbers I, arXiv:1305.1867v1 [math.NT], May 4, 2013.


EXAMPLE

45 is in A087442 because it is not a prime power and because its prime divisors are 3 and 5 and 31=2 as well as 51=4 divide 451 = 44.


MATHEMATICA

wcQ[n_] := Length[(p = FactorInteger[n][[;; , 1]])] > 1 && AllTrue[p, Divisible[n1, #1] &]; Select[Range[10^4], wcQ] (* Amiram Eldar, Sep 22 2019 *)


PROG

(GAP) for i in [2..20000] do if IsSubset (DivisorsInt(i1), Set (FactorsInt (i))  1) and not IsPrimePowerInt (i) then Print (i, ", "); fi; od;


CROSSREFS

Cf. A000961, A087441, A225498.
Sequence in context: A184539 A146302 A203835 * A334035 A280059 A251451
Adjacent sequences: A087439 A087440 A087441 * A087443 A087444 A087445


KEYWORD

easy,nonn


AUTHOR

Jens Voß, Sep 04 2003


STATUS

approved



