OFFSET
1,1
COMMENTS
An odd composite number n > 1 is a weak Carmichael number iff the prime factors of n are a subset of the prime factors of Clausen(n-1,1) (cf. A160014). If additionally n divides Clausen(n-1,1) then n is a Carmichael number. - Peter Luschny, May 21 2019
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
Romeo Meštrović, Generalizations of Carmichael numbers I, arXiv:1305.1867 [math.NT], May 4, 2013.
R. G. E. Pinch, The Carminchael numbers up to 10^15, Math. Comp. 61 (1993), 381-391.
R. G. E. Pinch, The Carmichael numbers up to 10^18, arXiv:math/060437 [math.NT], 2006.
MAPLE
with(numtheory): isweakCarmichael := proc(n)
if irem(n, 2) = 0 or isprime(n) then return false fi;
factorset(n) subset factorset(Clausen(n-1, 1)) end: # A160014
select(isweakCarmichael, [$2..3500]); # Peter Luschny, May 21 2019
MATHEMATICA
pf[n_] := FactorInteger[n][[All, 1]];
Clausen[0, _] = 1; Clausen[n_, k_] := Times @@ (Select[Divisors[n],
PrimeQ[# + k] &] + k);
weakCarmQ[n_] := If[EvenQ[n] || PrimeQ[n], Return[False], pf[n] == (pf[n] ~Intersection~ pf[Clausen[n-1, 1]])];
Select[Range[2, 3500], weakCarmQ] (* Jean-François Alcover, Jun 03 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, May 08 2013
STATUS
approved