|
|
A160014
|
|
Generalized Clausen numbers (table read by antidiagonals).
|
|
33
|
|
|
1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 2, 2, 3, 1, 1, 5, 30, 15, 5, 5, 1, 6, 2, 3, 1, 5, 1, 1, 7, 42, 21, 35, 35, 7, 7, 1, 2, 2, 15, 1, 5, 1, 7, 1, 1, 3, 30, 3, 5, 5, 7, 7, 1, 1, 1, 10, 2, 3, 1, 35, 1, 7, 1, 1, 1, 1, 11, 66, 165, 385, 55, 77, 77, 11, 11, 11, 11, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
T(n,k) = Product_{ p - k | n} p, where p is prime.
T(n,0) is the squarefree kernel of n (A007947).
T(n,1) are the classical Clausen numbers (A141056). The classical Clausen numbers are by the von Staudt-Clausen theorem the denominators of the Bernoulli numbers.
|
|
REFERENCES
|
Clausen, Thomas, "Lehrsatz aus einer Abhandlung ueber die Bernoullischen Zahlen", Astr. Nachr. 17 (1840), 351-352.
|
|
LINKS
|
|
|
EXAMPLE
|
[k\n][0--1--2---3---4---5---6---7----8----9---10---11----12---13---14----15]
[0]...1..1..2...3...2...5...6...7....2....3...10...11.....6...13...14....15
[1]...1..2..6...2..30...2..42...2...30....2...66....2..2730....2....6.....2
[2]...1..3..3..15...3..21..15...3....3..165...21...39....15....3....3..1785
[3]...1..1..5...1..35...1...5...1..385....1...65....1....35....1...85.....1
[4]...1..5..5..35...5...5..35..55....5..455....5....5....35...85...55...665
[5]...1..1..7...1...7...1..77...1...91....1....7....1..1309....1..133.....1
T(3,4) = 35 = 5*7 because 5 and 7 are the only prime numbers p such that
(p - 4) divides 3.
|
|
MAPLE
|
Clausen := proc(n, k) local S, i;
S := numtheory[divisors](n);
S := map(i->i+k, S);
S := select(isprime, S);
mul(i, i=S) end:
|
|
MATHEMATICA
|
t[0, _] = 1; t[n_, k_] := Times @@ (Select[Divisors[n], PrimeQ[# + k] &] + k); Table[t[n-k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 26 2013 *)
|
|
PROG
|
(Sage)
def Clausen(n, k):
if k == 0: return 1
return mul(filter(lambda s: is_prime(s), map(lambda i: i+n, divisors(k))))
for n in (0..5): [Clausen(n, k) for k in (0..15)] # Peter Luschny, Jun 05 2013
(PARI) T(n, k)=if(n, my(s=1); fordiv(n, d, if(isprime(d+k), s*=d+k)); s, 1)
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|