|
|
A027642
|
|
Denominator of Bernoulli number B_n.
|
|
372
|
|
|
1, 2, 6, 1, 30, 1, 42, 1, 30, 1, 66, 1, 2730, 1, 6, 1, 510, 1, 798, 1, 330, 1, 138, 1, 2730, 1, 6, 1, 870, 1, 14322, 1, 510, 1, 6, 1, 1919190, 1, 6, 1, 13530, 1, 1806, 1, 690, 1, 282, 1, 46410, 1, 66, 1, 1590, 1, 798, 1, 870, 1, 354, 1, 56786730, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Julius Worpitzky's 1883 algorithm for generating Bernoulli numbers is described in A028246. - Gary W. Adamson, Aug 09 2008
The sequence of denominators of B_n is defined here by convention, not by necessity. The convention amounts to mapping 0 to the rational number 0/1. It might be more appropriate to regard numerators and denominators of the Bernoulli numbers as independent sequences N_n and D_n which combine to B_n = N_n / D_n. This is suggested by the theorem of Clausen which describes the denominators as the sequence D_n = 1, 2, 6, 2, 30, 2, 42, ... which combines with N_n = 1, -1, 1, 0, -1, 0, ... to the sequence of Bernoulli numbers. (Cf. A141056 and A027760.) - Peter Luschny, Apr 29 2009
|
|
REFERENCES
|
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 810.
Jacob Bernoulli, Ars Conjectandi, Basel: Thurneysen Brothers, 1713. See page 97.
Thomas Clausen, "Lehrsatz aus einer Abhandlung Über die Bernoullischen Zahlen", Astr. Nachr. 17 (1840), 351-352 (see P. Luschny link).
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 49.
H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 230.
L. M. Milne-Thompson, Calculus of Finite Differences, 1951, p. 137.
Roger Plymen, The Great Prime Number Race, AMS, 2020. See pp. 8-10.
|
|
LINKS
|
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
|
|
FORMULA
|
E.g.f: x/(exp(x) - 1); take denominators.
Let E(x) be the e.g.f., then E(x) = U(0), where U(k) = 2*k + 1 - x*(2*k+1)/(x + (2*k+2)/(1 + x/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Jun 25 2012
E.g.f.: x/(exp(x)-1) = E(0) where E(k) = 2*k+1 - x/(2 + x/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 16 2013
E.g.f.: x/(exp(x)-1) = 2*E(0) - 2*x, where E(k)= x + (k+1)/(1 + 1/(1 - x/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 10 2013
E.g.f.: x/(exp(x)-1) = (1-x)/E(0), where E(k) = 1 - x*(k+1)/(x*(k+1) + (k+2-x)*(k+1-x)/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 21 2013
E.g.f.: conjecture: x/(exp(x)-1) = T(0)/2 - x, where T(k) = 8*k+2 + x/( 1 - x/( 8*k+6 + x/( 1 - x/T(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2013
|
|
EXAMPLE
|
B_n sequence begins 1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, 0, -691/2730, 0, 7/6, 0, -3617/510, ...
|
|
MAPLE
|
(-1)^n*sum( (-1)^'m'*'m'!*stirling2(n, 'm')/('m'+1), 'm'=0..n);
|
|
MATHEMATICA
|
Denominator[ Range[0, 68]! CoefficientList[ Series[x/(E^x - 1), {x, 0, 68}], x]]
(* Alternative code using Clausen Theorem: *)
A027642[k_Integer]:=If[EvenQ[k], Times@@Table[Max[1, Prime[i]*Boole[Divisible[k, Prime[i]-1]]], {i, 1, PrimePi[2k]}], 1+KroneckerDelta[k, 1]]; (* Enrique Pérez Herrero, Jul 15 2010 *)
a[0] = 1; a[1] = 2; a[n_?OddQ] = 1; a[n_] := Times @@ Select[Divisors[n] + 1, PrimeQ]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 12 2012, after Ilan Vardi, when direct computation for large n is unfeasible *)
|
|
PROG
|
(PARI) a(n)=if(n<0, 0, denominator(bernfrac(n)))
(PARI) a(n) = if(n == 0 || (n > 1 && n % 2), 1, vecprod(select(x -> isprime(x), apply(x -> x + 1, divisors(n))))); \\ Amiram Eldar, Apr 24 2024
(Magma) [Denominator(Bernoulli(n)): n in [0..150]]; // Vincenzo Librandi, Mar 29 2011
(Haskell)
a027642 n = a027642_list !! n
a027642_list = 1 : map (denominator . sum) (zipWith (zipWith (%))
(zipWith (map . (*)) (tail a000142_list) a242179_tabf) a106831_tabf)
(Sage)
f, R, C = 1, [1], [1]+[0]*(len-1)
for n in (1..len-1):
f *= n
for k in range(n, 0, -1):
C[k] = C[k-1] / (k+1)
C[0] = -sum(C[k] for k in (1..n))
R.append((C[0]*f).denominator())
return R
(Python)
from sympy import bernoulli
[bernoulli(i).denominator() for i in range(51)] # Indranil Ghosh, Mar 18 2017
|
|
CROSSREFS
|
See A027641 (numerators) for full list of references, links, formulas, etc.
|
|
KEYWORD
|
nonn,frac,easy,core,nice
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|