The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027643 Numerators of poly-Bernoulli numbers B_n^(k) with k=2. 9
 1, 1, -1, -1, 7, 1, -38, -5, 11, 7, -3263, -15, 13399637, 7601, -8364, -91, 1437423473, 3617, -177451280177, -745739, 166416763419, 3317609, -17730427802974, -5981591, 51257173898346323, 5436374093, -107154672791057, -213827575 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..521 K. Imatomi, M. Kaneko, and E. Takeda, Multi-Poly-Bernoulli Numbers and Finite Multiple Zeta Values, J. Int. Seq. 17 (2014) # 14.4.5 Masanobu Kaneko, Poly-Bernoulli numbers, Journal de Théorie des Nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228. Masanobu Kaneko, Poly-Bernoulli numbers, Journal de Théorie des Nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228. Index entries for sequences related to Bernoulli numbers. FORMULA a(n) = numerator of Sum_{k=0..n} W(n,k)*h(k+1) with W(n,k) = (-1)^(n-k)*k!* Stirling2(n+1,k+1) the Worpitzky numbers and h(n) = Sum_{k=1..n} 1/k^2 the generalized harmonic numbers of order 2. - Peter Luschny, Sep 28 2017 MAPLE a := n -> numer((-1)^n*add( (-1)^m*m!*Stirling2(n, m)/(m+1)^2, m=0..n)): seq(a(n), n=0..27); MATHEMATICA k=2; Table[Numerator[(-1)^n Sum[(-1)^m m! StirlingS2[n, m]/(m+1)^k, {m, 0, n}]], {n, 0, 27}] (* Michael De Vlieger, Oct 28 2015 *) PROG (Magma) A027643:= func< n, k | Numerator( (&+[(-1)^(j+n)*Factorial(j)*StirlingSecond(n, j)/(j+1)^k: j in [0..n]]) ) >; [A027643(n, 2): n in [0..30]]; // G. C. Greubel, Aug 02 2022 (SageMath) def A027643(n, k): return numerator( sum((-1)^(n+j)*factorial(j)*stirling_number2(n, j)/(j+1)^k for j in (0..n)) ) [A027643(n, 2) for n in (0..30)] # G. C. Greubel, Aug 02 2022 CROSSREFS Cf. A027641, A027642, A027644, A027645, A027646, A027647, A027648, A027649, A027650, A027651. Sequence in context: A147482 A171770 A050402 * A225122 A051931 A188728 Adjacent sequences: A027640 A027641 A027642 * A027644 A027645 A027646 KEYWORD sign,frac AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 04:31 EST 2023. Contains 367574 sequences. (Running on oeis4.)