login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027643 Numerators of poly-Bernoulli numbers B_n^(k) with k=2. 9
1, 1, -1, -1, 7, 1, -38, -5, 11, 7, -3263, -15, 13399637, 7601, -8364, -91, 1437423473, 3617, -177451280177, -745739, 166416763419, 3317609, -17730427802974, -5981591, 51257173898346323, 5436374093, -107154672791057, -213827575 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
LINKS
K. Imatomi, M. Kaneko, and E. Takeda, Multi-Poly-Bernoulli Numbers and Finite Multiple Zeta Values, J. Int. Seq. 17 (2014) # 14.4.5
Masanobu Kaneko, Poly-Bernoulli numbers, Journal de Théorie des Nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228.
Masanobu Kaneko, Poly-Bernoulli numbers, Journal de Théorie des Nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228.
FORMULA
a(n) = numerator of Sum_{k=0..n} W(n,k)*h(k+1) with W(n,k) = (-1)^(n-k)*k!* Stirling2(n+1,k+1) the Worpitzky numbers and h(n) = Sum_{k=1..n} 1/k^2 the generalized harmonic numbers of order 2. - Peter Luschny, Sep 28 2017
MAPLE
a := n -> numer((-1)^n*add( (-1)^m*m!*Stirling2(n, m)/(m+1)^2, m=0..n)):
seq(a(n), n=0..27);
MATHEMATICA
k=2; Table[Numerator[(-1)^n Sum[(-1)^m m! StirlingS2[n, m]/(m+1)^k, {m, 0, n}]], {n, 0, 27}] (* Michael De Vlieger, Oct 28 2015 *)
PROG
(Magma)
A027643:= func< n, k | Numerator( (&+[(-1)^(j+n)*Factorial(j)*StirlingSecond(n, j)/(j+1)^k: j in [0..n]]) ) >;
[A027643(n, 2): n in [0..30]]; // G. C. Greubel, Aug 02 2022
(SageMath)
def A027643(n, k): return numerator( sum((-1)^(n+j)*factorial(j)*stirling_number2(n, j)/(j+1)^k for j in (0..n)) )
[A027643(n, 2) for n in (0..30)] # G. C. Greubel, Aug 02 2022
CROSSREFS
Sequence in context: A147482 A171770 A050402 * A225122 A051931 A188728
KEYWORD
sign,frac
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 04:31 EST 2023. Contains 367574 sequences. (Running on oeis4.)