login
A027651
Poly-Bernoulli numbers B_n^(k) with k=-4.
7
1, 16, 146, 1066, 6902, 41506, 237686, 1315666, 7107302, 37712866, 197451926, 1023358066, 5262831302, 26903268226, 136887643766, 693968021266, 3508093140902, 17693879415586, 89084256837206, 447884338361266, 2249284754708102, 11285908565322946, 56587579617416246
OFFSET
0,2
COMMENTS
a(n) is also the number of acyclic orientations of the complete bipartite graph K_{4,n}. - Vincent Pilaud, Sep 16 2020
LINKS
K. Imatomi, M. Kaneko, and E. Takeda, Multi-Poly-Bernoulli Numbers and Finite Multiple Zeta Values, J. Int. Seq. 17 (2014) # 14.4.5.
Ken Kamano, Sums of Products of Poly-Bernoulli Numbers of Negative Index, Journal of Integer Sequences, Vol. 15 (2012), #12.1.3.
Masanobu Kaneko, Poly-Bernoulli numbers, Journal de théorie des nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228.
FORMULA
a(n) = 24*5^n -36*4^n +14*3^n -2^n. - Vladeta Jovovic, Nov 14 2003
G.f.: (1+4*x)*(1-x)^2/((1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)).
E.g.f.: 24*exp(5*x) - 36*exp(4*x) + 14*exp(3*x) - exp(2*x). - G. C. Greubel, Feb 07 2018
MAPLE
a:= (n, k) -> (-1)^n*sum((-1)^j*j!*Stirling2(n, j)/(j+1)^k, j=0..n);
seq(a(n, -4), n=0..30);
MATHEMATICA
Table[24*5^n -36*4^n +14*3^n -2^n, {n, 0, 30}] (* G. C. Greubel, Feb 07 2018 *)
LinearRecurrence[{14, -71, 154, -120}, {1, 16, 146, 1066}, 30] (* Harvey P. Dale, Nov 20 2019 *)
PROG
(Magma) [24*5^n-36*4^n+14*3^n-2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
(PARI) Vec((1+4*x)*((1-x)^2)/((1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)) + O(x^30)) \\ Michel Marcus, Feb 13 2015
(SageMath) [24*5^n -36*4^n +14*3^n -2^n for n in (0..30)] # G. C. Greubel, Aug 02 2022
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved