The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141056 1 followed by A027760, a variant of Bernoulli number denominators. 31
 1, 2, 6, 2, 30, 2, 42, 2, 30, 2, 66, 2, 2730, 2, 6, 2, 510, 2, 798, 2, 330, 2, 138, 2, 2730, 2, 6, 2, 870, 2, 14322, 2, 510, 2, 6, 2, 1919190, 2, 6, 2, 13530, 2, 1806, 2, 690, 2, 282, 2, 46410, 2, 66, 2, 1590, 2, 798, 2, 870, 2, 354, 2, 56786730, 2, 6, 2, 510, 2, 64722, 2, 30, 2, 4686 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The denominators of the Bernoulli numbers for n>0. B_n sequence begins 1, -1/2, 1/6, 0/2, -1/30, 0/2, 1/42, 0/2, ... This is an alternative version of A027642 suggested by the theorem of Clausen. - Peter Luschny, Apr 29 2009 Let f(n,k) = gcd { multinomial(n; n1, ..., nk) | n1 + ... + nk = n }; then a(n) = f(N,N-n+1)/f(N,N-n) for N >> n. - Mamuka Jibladze, Mar 07 2017 LINKS Antti Karttunen, Table of n, a(n) for n = 0..10080 Thomas Clausen, Lehrsatz aus einer Abhandlung Über die Bernoullischen Zahlen, Astr. Nachr. 17 (22) (1840), 351-352. Wikipedia, Bernoulli number FORMULA a(n) are the denominators of the polynomials generated by cosh(x*z)*z/(1-exp(-z)) evaluated x=1. See A176328 for the numerators. - Peter Luschny, Aug 18 2018 a(n) = denominator(Sum_{j=0..n} (-1)^(n-j)*j!*Stirling2(n,j)*B(j)), where B are the Bernoulli numbers A164555/A027642. - Fabián Pereyra, Jan 06 2022 EXAMPLE The rational values as given by the e.g.f. in the formula section start: 1, 1/2, 7/6, 3/2, 59/30, 5/2, 127/42, 7/2, 119/30, ... - Peter Luschny, Aug 18 2018 MAPLE Clausen := proc(n) local S, i; S := numtheory[divisors](n); S := map(i->i+1, S); S := select(isprime, S); mul(i, i=S) end proc: seq(Clausen(i), i=0..24); # Peter Luschny, Apr 29 2009 A141056 := proc(n) if n = 0 then 1 else A027760(n) end if; end proc: # R. J. Mathar, Oct 28 2013 MATHEMATICA a[n_] := Sum[ Boole[ PrimeQ[d+1]] / (d+1), {d, Divisors[n]}] // Denominator; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Aug 09 2012 *) PROG (PARI) A141056(n) = { p = 1; if (n > 0, fordiv(n, d, r = d + 1; if (isprime(r), p = p*r) ) ); return(p) } for(n=0, 70, print1(A141056(n), ", ")); /* Peter Luschny, May 07 2012 */ CROSSREFS Cf. A027760, A027642, A176328. Cf. A164555, A027642, A048993. Sequence in context: A217448 A280705 A027760 * A141498 A284004 A225481 Adjacent sequences: A141053 A141054 A141055 * A141057 A141058 A141059 KEYWORD nonn AUTHOR Paul Curtz, Aug 01 2008 EXTENSIONS Extended by R. J. Mathar, Nov 22 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 29 02:18 EDT 2023. Contains 365748 sequences. (Running on oeis4.)