login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284004
a(n) = A046523(A284003(n)).
2
1, 2, 6, 2, 30, 6, 2, 6, 210, 30, 6, 30, 2, 6, 30, 6, 2310, 210, 30, 210, 6, 30, 210, 30, 2, 6, 30, 6, 210, 30, 6, 30, 30030, 2310, 210, 2310, 30, 210, 2310, 210, 6, 30, 210, 30, 2310, 210, 30, 210, 2, 6, 30, 6, 210, 30, 6, 30, 2310, 210, 30, 210, 6, 30, 210, 30, 510510, 30030, 2310, 30030, 210, 2310, 30030, 2310, 30, 210, 2310, 210, 30030, 2310, 210, 2310
OFFSET
0,2
FORMULA
a(n) = A046523(A284003(n)).
a(n) = A002110(A001222(A284003(n))) = A002110(A209281(n))). [Latter so far only conjectured.]
MATHEMATICA
Table[Times @@ MapIndexed[Prime[First@ #2]^#1 &, Reverse@ Sort@ FactorInteger[#][[All, -1]]] - Boole[# == 1] &@ Apply[Times, FactorInteger[#] /. {p_, e_} /; e > 0 :> Times @@ (p^Mod[e, 2])] &[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e == 1 :> {Times @@ Prime@ Range@ PrimePi@ p, e}] &[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2]]], {n, 0, 52}] (* Michael De Vlieger, Mar 18 2017 *)
PROG
(PARI)
\\ Code for A284003 given under that entry.
A046523(n) = my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]) \\ From Charles R Greathouse IV, Aug 17 2011
(Scheme) (define (A284004 n) (A046523 (A284003 n)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 18 2017
STATUS
approved