OFFSET
0,4
COMMENTS
a(n) is the product of elements of the multiset that covers an initial interval of positive integers with multiplicities equal to the parts of the n-th composition in standard order (graded reverse-lexicographic, A066099). This composition is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. For example, the 13th composition is (1,2,1) giving the multiset {1,2,2,3} with product 12, so a(13) = 12. - Gus Wiseman, Apr 26 2020
LINKS
FORMULA
a(n) = A284005(A053645(n)) for n > 0 with a(0) = 1. - Mikhail Kurkov, Jun 05 2021 [verification needed]
MATHEMATICA
Table[Times @@ FactorInteger[#][[All, -1]] &[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e == 1 :> {Times @@ Prime@ Range@ PrimePi@ p, e}] &[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2]]], {n, 0, 93}] (* Michael De Vlieger, Mar 18 2017 *)
PROG
CROSSREFS
Row products of A095684.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Weighted sum is A029931.
- Necklaces are A065609.
- Sum is A070939.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon words are A275692.
- Distinct parts are counted by A334028.
KEYWORD
nonn,look
AUTHOR
Antti Karttunen, Mar 18 2017
STATUS
approved