login
A283999
a(n) = A005187(n) XOR A006068(n), where XOR is bitwise-xor (A003987).
3
0, 0, 0, 6, 0, 14, 14, 14, 0, 30, 30, 30, 30, 30, 18, 16, 0, 62, 62, 62, 62, 62, 50, 48, 62, 62, 34, 32, 34, 32, 44, 44, 0, 126, 126, 126, 126, 126, 114, 112, 126, 126, 98, 96, 98, 96, 108, 108, 126, 126, 66, 64, 66, 64, 76, 76, 66, 64, 92, 92, 92, 92, 92, 82, 0, 254, 254, 254, 254, 254, 242, 240, 254, 254, 226, 224, 226, 224, 236, 236, 254, 254, 194, 192, 194
OFFSET
0,4
FORMULA
a(n) = A005187(n) XOR A006068(n), where XOR is bitwise-xor (A003987).
a(n) = A006068(2*n) XOR A283997(2*n).
MATHEMATICA
Table[BitXor[Fold[BitXor, n, Quotient[n, 2^Range[BitLength@ n - 1]]], 2 n - DigitCount[2 n, 2, 1]], {n, 0, 84}] (* Michael De Vlieger, Mar 20 2017, after Jan Mangaldan at A006068 *)
PROG
(Scheme) (define (A283999 n) (A003987bi (A005187 n) (A006068 n))) ;; Where A003987bi implements bitwise-XOR (A003987).
(PARI) b(n) = if(n<1, 0, b(n\2) + n%2);
A(n) = 2*n - b(2*n);
a(n) = if(n<2, n, 2*a(floor(n/2)) + (n%2 + a(floor(n/2))%2)%2);
for(n=0, 110, print1(bitxor(A(n), a(n)), ", ")) \\ Indranil Ghosh, Mar 25 2017
(Python)
def A(n): return 2*n - bin(2*n)[2:].count("1")
def a(n): return n if n<2 else 2*a(n//2) + (n%2 + a(n//2)%2)%2
print([A(n)^a(n) for n in range(111)]) # Indranil Ghosh, Mar 25 2017
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Mar 20 2017
STATUS
approved