login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283998
a(n) = n AND A005187(floor(n/2)), where AND is bitwise-and (A004198).
3
0, 0, 0, 1, 0, 1, 4, 4, 0, 1, 8, 8, 8, 8, 10, 11, 0, 1, 16, 16, 16, 16, 18, 19, 16, 16, 18, 19, 24, 25, 26, 26, 0, 1, 32, 32, 32, 32, 34, 35, 32, 32, 34, 35, 40, 41, 42, 42, 32, 32, 34, 35, 48, 49, 50, 50, 48, 49, 50, 50, 56, 56, 56, 57, 0, 1, 64, 64, 64, 64, 66, 67, 64, 64, 66, 67, 72, 73, 74, 74, 64, 64, 66, 67, 80, 81, 82, 82, 80, 81, 82, 82, 88, 88, 88, 89
OFFSET
0,7
FORMULA
a(n) = n AND A005187(floor(n/2)), where AND is bitwise-and (A004198).
a(n) = A283996(n) - A283997(n).
a(n) = A005187(n) - A283996(n) = (A005187(n) - A283997(n))/2.
MATHEMATICA
A[n_]:=2*n - DigitCount[2*n, 2, 1]; Table[BitAnd[n, A[Floor[n/2]]], {n, 0, 100}] (* Indranil Ghosh, Mar 25 2017 *)
PROG
(Scheme) (define (A283998 n) (A004198bi n (A005187 (floor->exact (/ n 2))))) ;; Where A004198bi implements bitwise-AND (A004198).
(PARI) b(n) = if(n<1, 0, b(n\2) + n%2);
A(n) = 2*n - b(2*n);
for(n=0, 100, print1(bitand(n, A(floor(n/2))), ", ")) \\ Indranil Ghosh, Mar 25 2017
(Python)
def A(n): return 2*n - bin(2*n)[2:].count("1")
print([n&A(n//2) for n in range(101)]) # Indranil Ghosh, Mar 25 2017
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Mar 19 2017
STATUS
approved