login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131124
Expansion of q^(-1) * (phi(-q) / psi(q^4))^2 in powers of q where phi(), psi() are Ramanujan theta functions.
3
1, -4, 4, 0, 2, 0, -8, 0, -1, 0, 20, 0, -2, 0, -40, 0, 3, 0, 72, 0, 2, 0, -128, 0, -4, 0, 220, 0, -4, 0, -360, 0, 5, 0, 576, 0, 8, 0, -904, 0, -8, 0, 1384, 0, -10, 0, -2088, 0, 11, 0, 3108, 0, 12, 0, -4552, 0, -15, 0, 6592, 0, -18, 0, -9448, 0, 22, 0, 13392
OFFSET
-1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 3 of the 15 generalized eta-quotients listed in Table I of Yang 2004. - Michael Somos, Jul 21 2014
A generator (Hauptmodul) of the function field associated with congruence subgroup Gamma_0(8). [Yang 2004] - Michael Somos, Jul 21 2014
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Y. Yang, Transformation formulas for generalized Dedekind eta functions, Bull. London Math. Soc. 36 (2004), no. 5, 671-682. See p. 679, Table 1.
FORMULA
Expansion of (eta(q)^2 * eta(q^4) / (eta(q^2) * eta(q^8)^2 ))^2 in powers of q.
Euler transform of period 8 sequence [ -4, -2, -4, -4, -4, -2, -4, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 32 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A107035.
G.f. A(q) satisfies 0 = f(A(q), A(q^2)) where f(u, v) = u * (u + 8) * (v + 4) - v^2.
G.f.: (x * Product_{k>0} (1 + x^k)^4 * (1 + x^(2*k))^2 * (1 + x^(4*k))^4 )^-1.
Convolution inverse of A107035.
a(2*n) = 0 unless n=0. a(n) = A029841(n) unless n=0. a(4*n - 1) = A029839(n). a(4*n + 1) = 4 * A079006(n).
EXAMPLE
G.f. = 1/q - 4 + 4*q + 2*q^3 - 8*q^5 - q^7 + 20*q^9 - 2*q^11 - 40*q^13 + 3*q^15 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 4 (EllipticTheta[ 4, 0, q] / EllipticTheta[ 2, 0, q^2])^2, {q, 0, n}]; (* Michael Somos, Apr 24 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x + A)^2 * eta(x^4 + A) / (eta(x^2 + A) * eta(x^8 + A)^2) )^2, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jun 15 2007
STATUS
approved