OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
C. Adiga, N. Anitha and T. Kim, Transformations of Ramanujan's Summation Formula and its Applications, arXiv:math/0501528 [math.NT], 2005. See page 5.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/3) * eta(q^2)^10 / (eta(q)^4 * eta(q^4)^2) in powers of q.
Euler transform of period 4 sequence [4, -6, 4, -4, ...].
a(n) = (-1)^n * A187149(n). a(4*n + 3) = a(8*n + 5) = 0.
G.f. Product_{k>0} (1 + x^k)^4 (1 - x^(2*k))^4 / (1 + x^(2*k))^2.
EXAMPLE
1 + 4*x + 4*x^2 + 2*x^4 - 8*x^6 - 5*x^8 - 16*x^9 + 4*x^10 - 10*x^12 + ...
q + 4*q^4 + 4*q^7 + 2*q^13 - 8*q^19 - 5*q^25 - 16*q^28 + 4*q^31 - 10*q^37 + ...
MATHEMATICA
a[n_]:= SeriesCoefficient[(x^(-1/2)/16)*EllipticTheta[2, 0, x^(1/2)]^4* QPochhammer[x^2, x^4]^2, {x, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jan 04 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^10 / (eta(x^4 + A)^2 * eta(x + A)^4), n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, May 24 2005
STATUS
approved