OFFSET
0,9
COMMENTS
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
FORMULA
T(n, k) = Sum_{j=0..n-k} (-1)^j*binomial(2n-k-j, j).
T(n,k) = T(n-1,k-1) - 2*T(n-1,k) + T(n-2,k-1) - 2*T(n-2,k) + T(n-3,k-1) - T(n-3,k), T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = 0, T(2,1) = T(2,0) = -1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 12 2014
Sum_{k=0..n} T(n,k) = A106510(n). - G. C. Greubel, Apr 28 2021
EXAMPLE
Triangle begins:
1;
0, 1;
-1, -1, 1;
1, 0, -2, 1;
0, 1, 2, -3, 1;
-1, -1, -1, 5, -4, 1;
MATHEMATICA
(* The function RiordanArray is defined in A256893. *)
RiordanArray[(1 + #)/(1 + # + #^2)&, #/(1 + #)&, 12] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
PROG
(Magma)
T:= func< n, k | (&+[ (-1)^j*Binomial(2*n-k-j, j): j in [0..n-k]]) >;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 28 2021
(Sage)
def T(n, k): return sum( (-1)^j*binomial(2*n-k-j, j) for j in (0..n-k))
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 28 2021
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, May 04 2005
STATUS
approved