login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329116
Successively count to (-1)^(n+1)*n (n = 0, 1, 2, ... ).
7
0, 1, 0, -1, -2, -1, 0, 1, 2, 3, 2, 1, 0, -1, -2, -3, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8
OFFSET
0,5
COMMENTS
Also x-coordinates of a point moving in counterclockwise triangular spiral (A329972 gives the y-coordinates).
FORMULA
a(n) = (-1)^t * (t^2 - t - n) where t=ceiling(sqrt(n)).
a(n) = (-1)^t * floor(t^2 - sqrt(n) - n) where t=ceiling(sqrt(n)).
A053615(n) = abs(a(n)).
abs(A196199(n)) = abs(a(n)).
A255175(n) = a(n+1).
EXAMPLE
y
|
4 | 56
| \
| \
| \
3 | 30 55
| / \ \
| / \ \
| / \ \
2 | 31 12 29 54
| / / \ \ \
| / / \ \ \
| / / \ \ \
1 | 32 13 2 11 28 53
| / / / \ \ \ \
| / / / \ \ \ \
| / / / \ \ \ \
0 | 33 14 3 0---1 10 27 52
| / / / \ \ \
| / / / \ \ \
| / / / \ \ \
-1 | 34 15 4---5---6---7---8---9 26 51
| / / \ \
| / / \ \
| / / \ \
-2 | 35 16--17--18--19--20--21--22--23--24--25 50
| / \
| / \
| / \
-3 | 36--37--38--39--40--41--42--43--44--45--46--47--48--49
|
+--------------------------------------------------------
x: -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
We count as follows. Start at n=0 with 0.
Next step is to count to 1: so we have 0, 1.
Next step is to count to -2, so we have 0, 1, 0, -1, -2.
Next we have to go to +3, so we have 0, 1, 0, -1, -2, -1, 0, 1, 2, 3.
And so on.
MATHEMATICA
a[n_] := Table[(-1)^(# + 1)*(-#^2 + # + k) &[Ceiling@ Sqrt@ k], {k, 0, n}]; a[64]
PROG
(Python)
from math import isqrt
def A329116(n): return ((t:=1+isqrt(n-1))*(t-1)-n)*(-1 if t&1 else 1) if n else 0 # Chai Wah Wu, Aug 04 2022
CROSSREFS
Cf. A053615, A196199, A339265 (first differences). Essentially the same as A255175.
Sequence in context: A106509 A324692 A228110 * A255175 A196199 A053615
KEYWORD
sign,easy,look
AUTHOR
Mikk Heidemaa, Nov 13 2019
STATUS
approved