login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339265
Expansion of Product_{n >= 1} (1 - x^(2*n))*(1 - x^(2*n-1))*(1 - x^(2*n+1)).
2
1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1
OFFSET
0
COMMENTS
The sequence consists of a 1, followed by three negative ones, followed by five ones, followed by seven negative ones, and so on.
FORMULA
O.g.f.: A(x) = theta_4(x)/(1 - x) = 1/(1 - x) * Sum_{n >= 0 } (-1)^n*x^(n^2), where theta_4(x) is the Jacobi theta function - see A002448. Note 1/A(x) is the generating function for A211971.
MAPLE
series( (1 + 2*add((-1)^n*x^(n^2), n = 1..10))/(1 - x), x, 101);
CROSSREFS
Cf. A002448, A211971, A255175 (partial sums), A329116 (partial sums).
Sequence in context: A097807 A014077 A174351 * A181432 A165326 A143621
KEYWORD
sign,easy
AUTHOR
Peter Bala, Nov 29 2020
STATUS
approved