OFFSET
1,1
COMMENTS
This formula that derives from Ramanujan modular equations is correct to 9 places exactly (see Ramanujan link, page 43).
Pi = 3.1415926535... and this approximation = 3.1415926538...
A quadratic number with minimal polynomial 168125x^2 - 792225x + 829521 and denominator 6725. - Charles R Greathouse IV, Oct 02 2022
REFERENCES
Jörg Arndt and Christoph Haenel, Pi Unleashed, Springer-Verlag, 2006, retrieved Jun 05 2013, (4.17) page 57.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Revised Edition), Penguin Books, 1997, entry 3.14159 (Pi), page 36.
LINKS
S. Ramanujan, Modular equations and approximations to Pi, Quarterly Journal of Mathematics, XLV, 1914, p. 43.
FORMULA
Equals (63/13450) * (503+75*sqrt(5)).
Equals the root of 829521 - 792225*x + 168125*x^2 which is > 3. - Peter Luschny, Nov 29 2020
EXAMPLE
3.141592653805688201898390006301507822487503475774...
MAPLE
evalf((63/25)*(17+15*sqrt(5))/(7+15*sqrt(5)), 100);
MATHEMATICA
RealDigits[(63/25)*(17 + 15*Sqrt[5])/(7 + 15*Sqrt[5]), 10, 100][[1]] (* Amiram Eldar, Nov 29 2020 *)
PROG
(PARI) (63/13450) * (503+75*sqrt(5)) \\ Michel Marcus, Nov 29 2020
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Bernard Schott, Nov 29 2020
STATUS
approved