|
|
A068028
|
|
Decimal expansion of 22/7.
|
|
13
|
|
|
3, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
This is an approximation to Pi. It is accurate to 0.04025%.
Consider the recurring part of 22/7 and the sequences R(i) = 2, 1, 4, 2, 3, 0, 2, ... and Q(i) = 1, 4, 2, 8, 5, 7, 1, .... For i > 0, let X(i) = 10*R(i) + Q(i). Then Q(i+1) = floor(X(i)/Y); R(i+1) = X(i) - Y*Q(i+1); here Y=5; X(0)=X=7. Note 1/7 = 7/49 = X/(10*Y-1). Similar comment holds elsewhere. If we consider the sequences R(i) = 3, 2, 3, 5, 5, 1, 4, 0, 6, 4, 6, 3, 4, 3, 1, 1, 5, 2, 6, 0, 2, 0, 3, ... and Q(i) = A021027, we have X=3; Y=7 (attributed to Vedic literature). - K.V.Iyer, Jun 16 2010, Jun 18 2010
The sequence of convergents of the continued fraction of Pi begins [3, 22/7, 333/106, 355/113, 103993/33102, ...]. 22/7 is the second convergent. The summation 240*Sum_{n >= 1} 1/((4*n+1)*(4*n+2)*(4*n+3)*(4*n+5)(4*n+6)*(4*n+7)) = 22/7 - Pi shows that 22/7 is an over-approximation to Pi. - Peter Bala, Oct 12 2021
|
|
LINKS
|
Table of n, a(n) for n=1..105.
D. Castellanos, The ubiquitous pi, Math. Mag., 61 (1988), 67-98 and 148-163. - N. J. A. Sloane, Mar 24 2012
D. P. Dalzell, On 22/7, J. London Math. Soc. 19, 133-134, 1944.
Dale Winham, Facts about Pi
Index entries for sequences related to the number Pi
Index entries for linear recurrences with constant coefficients, signature (1, 0, -1, 1).
|
|
FORMULA
|
a(0)=3, a(n) = floor(714285/10^(5-(n mod 6)). - Sascha Kurz, Mar 23 2002.
Equals 100*A021018 - 4 = 3 + A020806. - R. J. Mathar, Sep 30 2008
For n>1 a(n) = A020806(n-2) (note offset=0 in A020806 and offset=1 in A068028). - Zak Seidov, Mar 26 2015
G.f.: x*(3-2*x+3*x^2+x^3+4*x^4)/((1-x)*(1+x)*(1-x+x^2)). - Vincenzo Librandi, Mar 27 2015
|
|
MATHEMATICA
|
CoefficientList[Series[(3 - 2 x + 3 x^2 + x^3 + 4 x^4) / ((1 - x) (1 + x) (1 - x + x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 27 2015 *)
Join[{3}, LinearRecurrence[{1, 0, -1, 1}, {1, 4, 2, 8}, 104]] (* Ray Chandler, Aug 26 2015 *)
RealDigits[22/7, 10, 120][[1]] (* Harvey P. Dale, Oct 04 2021 *)
|
|
PROG
|
(MAGMA) I:=[3, 1, 4, 2, 8]; [n le 5 select I[n] else Self(n-1)-Self(n-3)+Self(n-4): n in [1..100]]; // Vincenzo Librandi, Mar 27 2015
(PARI) a(n)=22/7. \\ Charles R Greathouse IV, Oct 07 2015
|
|
CROSSREFS
|
Cf. A068079, A068089, A002485, A002486, A046965, A046947.
Sequence in context: A274531 A115659 A067060 * A240058 A275896 A340754
Adjacent sequences: A068025 A068026 A068027 * A068029 A068030 A068031
|
|
KEYWORD
|
easy,nonn,cons
|
|
AUTHOR
|
Nenad Radakovic, Mar 22 2002.
|
|
EXTENSIONS
|
More terms from Sascha Kurz, Mar 23 2002
Alternative to broken link added by R. J. Mathar, Jun 18 2010
|
|
STATUS
|
approved
|
|
|
|