login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A020806 Decimal expansion of 1/7. 30
1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

142857 and 999999 = 7*142857 are first and last Kaprekar numbers with six digits. Note a(n) + a(n+3) = 9. (142857^2 = 20408122449; 20408 + 122449 = 142857.) a(n)^2 = 1, 16, 4, 64, 25, 49, ... - Paul Curtz, Aug 24 2009

The constant 19 + 1/7 = 19.142857.. is the Kirchhoff index of the Möbius ladder graph on v=8 vertices. The laplacian matrix has the eigenvalues 4 (one time), 4-sqrt(2) (2 times), 4+sqrt(2) (2 times), 2 (2 times) and 0 (one time). Then the Kirchhoff index is v times the sum over the inverse, nonzero eigenvalues. - R. J. Mathar, Feb 13 2011

Decimal expansion of -99*(zeta(-5) + zeta(-9)) - 1. - Arkadiusz Wesolowski, Sep 15 2013

Also, decimal expansion of Sum_{i>0} 1/8^i. - Bruno Berselli, Jan 03 2014

The points whose co-ordinates are overlapping pairs of digits of this sequence, (1, 4), (4, 2), (2, 8), (8, 5), (5, 7) and (7, 1), all lie on one ellipse, with equation 19*x^2 + 36*x*y + 41*y^2 - 333*x - 531*y = -1638. Overlapping pairs of pairs of digits, (14, 28), (42, 85), (28, 57), (85, 71), (57, 14), (71, 42), also yield 6 points on one ellipse, with equation -165104*x^2 + 160804*x*y + 8385498*x - 41651*y^2 - 3836349*y = 7999600. (See book of Wells and MathWorld link.) - M. F. Hasler, Oct 25 2017

REFERENCES

H. Rademacher and O. Toeplitz, Von Zahlen und Figuren (Springer 1930, reprinted 1968), ch. 19, 'Die periodischen Dezimalbrüche'.

D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, 1986.

LINKS

Table of n, a(n) for n=0..98.

J. Hall, One-Seventh Ellipse, on MathWorld, by E. W. Weisstein.

Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1).

FORMULA

A028416(1)=7; A002371(A049084(7)) = A002371(4) = 6. a(n+6) = a(n), a(n+6/2) = 9 - a(n). - Reinhard Zumkeller, Oct 06 2008

a(n) = (1/30)*(39*(n mod 6)-((n+1) mod 6)+24*((n+2) mod 6)-21*((n+3) mod 6)+19*((n+4) mod 6)-6*((n+5) mod 6)). - Paolo P. Lava, Jan 21 2009

From Colin Barker, Aug 14 2012: (Start)

a(n) = a(n-1) - a(n-3) + a(n-4) for n>3.

G.f.: (1+3*x-2*x^2+7*x^3) / ((1-x)*(1+x)*(1-x+x^2)). (End)

a(n) = A068028(n+2). - Zak Seidov, Mar 26 2015

a(n) = (27 - 11*cos(n*Pi) - 10*cos(n*Pi/3) - 6*sqrt(3)*sin(n*Pi/3))/6. - Wesley Ivan Hurt, Jun 28 2016

EXAMPLE

0.142857142857142857...

MAPLE

Digits:=100: evalf(1/7); # Wesley Ivan Hurt, Jun 28 2016

MATHEMATICA

CoefficientList[Series[(1 + 3 x - 2 x^2 + 7 x^3) / ((1 - x) (1 + x) (1 - x + x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 27 2015 *)

PROG

(MAGMA) I:=[1, 4, 2, 8]; [n le 4 select I[n] else Self(n-1)-Self(n-3)+Self(n-4): n in [1..100]]; // Vincenzo Librandi, Mar 27 2015

(PARI) 1/7. \\ Charles R Greathouse IV, Sep 24 2015

(PARI) digits(10^99\7) \\ M. F. Hasler, Oct 25 2017

CROSSREFS

Cf. A002371, A028416, A049084, A068028.

Sequence in context: A000727 A030181 A021879 * A030210 A098798 A131783

Adjacent sequences:  A020803 A020804 A020805 * A020807 A020808 A020809

KEYWORD

nonn,cons,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 25 08:12 EST 2018. Contains 299646 sequences. (Running on oeis4.)