OFFSET
1,1
COMMENTS
Primes whose reciprocals have even period length.
Primes p such that the order of 10 mod p is even. - Joerg Arndt, Mar 04 2014
Let (d(i): 1<=i<=2*K) be the period of the decimal expansion of 1/a(n), K=A002371(A049084(a(n)))/2, then d(i) + d(i+K) = 9 for i with 1<=i<=K, or, equivalently: u + v = 10^K - 1 with u = Sum_{i=1..K} d(i)*10^(K-i) and v = Sum_{i=1..K} d(i+K)*10^(K-i). - Reinhard Zumkeller, Oct 05 2008
REFERENCES
H. Rademacher and O. Toeplitz, Von Zahlen und Figuren (Springer 1930, reprinted 1968), ch. 19, "Die periodischen Dezimalbrueche". [Reinhard Zumkeller, Oct 05 2008]
LINKS
EXAMPLE
From Reinhard Zumkeller, Oct 05 2008: (Start)
(0,5,8,8,2,3,5,2,9,4,1,1,7,6,4,7) is the period of 1/17 (see A007450),
u = 5882352, v = 94117647: u + v = 99999999 = 10^8 - 1. (End)
MAPLE
A028416 := proc(n) local st:
st := ithprime(n):
if (modp(numtheory[order](10, st), 2) = 0) then
RETURN(st)
fi: end: seq(A028416(n), n=1..100); # Jani Melik, Feb 24 2011
MATHEMATICA
Select[Prime[Range[4, 100]], EvenQ[Length[RealDigits[1/#][[1, 1]]]]&] (* Harvey P. Dale, Jul 07 2011 *)
PROG
(PARI) forprime(p=7, 1e3, if(znorder(Mod(10, p))%2==0, print1(p", "))) \\ Charles R Greathouse IV, Feb 24 2011
(Python)
from sympy import gcd, isprime, n_order
is_A028416 = lambda n: gcd(n, 10)==1 and n>5 and n_order(10, n)%2==0 and isprime(n) # M. F. Hasler, Nov 19 2024
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Mario Velucchi (mathchess(AT)velucchi.it)
EXTENSIONS
More terms from Reinhard Zumkeller, Jul 29 2003
STATUS
approved