login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028416
Primes p such that the decimal expansion of 1/p has a periodic part of even length.
13
7, 11, 13, 17, 19, 23, 29, 47, 59, 61, 73, 89, 97, 101, 103, 109, 113, 127, 131, 137, 139, 149, 157, 167, 179, 181, 193, 197, 211, 223, 229, 233, 241, 251, 257, 263, 269, 281, 293, 313, 331, 337, 349, 353, 367, 373, 379, 383, 389, 401, 409, 419, 421, 433
OFFSET
1,1
COMMENTS
Primes whose reciprocals have even period length.
Primes p such that the order of 10 mod p is even. - Joerg Arndt, Mar 04 2014
A002371(A049084(a(n))) mod 2 == 0.
Not the same as A040121: a(33)=241 is not in A040121.
Let (d(i): 1<=i<=2*K) be the period of the decimal expansion of 1/a(n), K=A002371(A049084(a(n)))/2, then d(i) + d(i+K) = 9 for i with 1<=i<=K, or, equivalently: u + v = 10^K - 1 with u = Sum_{i=1..K} d(i)*10^(K-i) and v = Sum_{i=1..K} d(i+K)*10^(K-i). - Reinhard Zumkeller, Oct 05 2008
REFERENCES
H. Rademacher and O. Toeplitz, Von Zahlen und Figuren (Springer 1930, reprinted 1968), ch. 19, "Die periodischen Dezimalbrueche". [Reinhard Zumkeller, Oct 05 2008]
EXAMPLE
From Reinhard Zumkeller, Oct 05 2008: (Start)
(0,5,8,8,2,3,5,2,9,4,1,1,7,6,4,7) is the period of 1/17 (see A007450),
K = A002371(A049084(17))/2 = A002371(7)/2 = 16/2 = 8,
u = 5882352, v = 94117647: u + v = 99999999 = 10^8 - 1. (End)
MAPLE
A028416 := proc(n) local st:
st := ithprime(n):
if (modp(numtheory[order](10, st), 2) = 0) then
RETURN(st)
fi: end: seq(A028416(n), n=1..100); # Jani Melik, Feb 24 2011
MATHEMATICA
Select[Prime[Range[4, 100]], EvenQ[Length[RealDigits[1/#][[1, 1]]]]&] (* Harvey P. Dale, Jul 07 2011 *)
PROG
(PARI) forprime(p=7, 1e3, if(znorder(Mod(10, p))%2==0, print1(p", "))) \\ Charles R Greathouse IV, Feb 24 2011
(Python)
from sympy import gcd, isprime, n_order
is_A028416 = lambda n: gcd(n, 10)==1 and n>5 and n_order(10, n)%2==0 and isprime(n) # M. F. Hasler, Nov 19 2024
CROSSREFS
Sequence in context: A135776 A067831 A086998 * A040121 A156114 A304690
KEYWORD
nonn,base
AUTHOR
Mario Velucchi (mathchess(AT)velucchi.it)
EXTENSIONS
More terms from Reinhard Zumkeller, Jul 29 2003
STATUS
approved