OFFSET
1,1
COMMENTS
Interestingly, the initial terms of A040119 (Primes p such that x^4 = 10 has a solution mod p) are identical to the initial terms of this sequence except for 241 which is a term of A040119 but not of A186635. [John W. Layman, Feb 25 2011]
MAPLE
Ax := proc(n) local st:
st := ithprime(n):
if (modp(numtheory[order](10, st), 2) <> 0) then
RETURN(st)
fi: end: seq(Ax(n), n=1..200);
MATHEMATICA
Union[{2, 5}, Select[Prime[Range[200]], OddQ[Length[RealDigits[1/#][[1, 1]]]] &]]
PROG
(PARI) select( {is_A186635(n)=isprime(n) && (n<7 || znorder(Mod(10, n))%2)}, [0..1234]) \\ M. F. Hasler, Nov 19 2024
(Python)
from sympy import isprime, n_order
is_A186635 = lambda n: isprime(n) and (n<7 or n_order(10, n)%2)
[n for n in range(1234) if is_A186635(n)] # M. F. Hasler, Nov 19 2024
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jani Melik, Feb 24 2011
STATUS
approved