login
A186634
Irregular triangle, read by rows, giving dense patterns of n primes.
4
0, 2, 0, 2, 6, 0, 4, 6, 0, 2, 6, 8, 0, 2, 6, 8, 12, 0, 4, 6, 10, 12, 0, 4, 6, 10, 12, 16, 0, 2, 6, 8, 12, 18, 20, 0, 2, 8, 12, 14, 18, 20, 0, 2, 6, 8, 12, 18, 20, 26, 0, 2, 6, 12, 14, 20, 24, 26, 0, 6, 8, 14, 18, 20, 24, 26, 0, 2, 6, 8, 12, 18, 20, 26, 30, 0, 2, 6, 12, 14, 20, 24, 26, 30, 0, 4, 6, 10, 16, 18, 24, 28, 30, 0, 4, 10, 12, 18, 22, 24, 28, 30, 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 0, 2, 6, 12, 14, 20, 24, 26, 30, 32
OFFSET
2,2
COMMENTS
The first pattern (0,2) is for twin primes (p,p+2). Row n contains A083409(n) patterns, each one consisting of 0 followed by n-1 terms. In each row the patterns are in lexicographic order.
These numbers (in a slightly different order) appear in Table 1 of the paper by Tony Forbes. Sequence A186702 gives the least prime starting a given pattern.
LINKS
T. D. Noe, Rows n = 2..20, flattened (from Forbes)
Thomas J. Engelsma, Permissible Patterns
Tony Forbes, Prime clusters and Cunningham chains, Math. Comp. 68 (1999), 1739-1747.
Eric Weisstein's World of Mathematics, Prime Constellation
EXAMPLE
The irregular triangle begins:
0, 2
0, 2, 6, 0, 4, 6
0, 2, 6, 8
0, 2, 6, 8, 12, 0, 4, 6, 10, 12
0, 4, 6, 10, 12, 16
0, 2, 6, 8, 12, 18, 20, 0, 2, 8, 12, 14, 18, 20
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
T. D. Noe, Feb 24 2011
STATUS
approved