login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208385
Expansion of b(q) * c(q) * c(q^2) / 9 in powers of q where b(), c() are cubic AGM theta functions.
3
1, -2, 0, -2, 6, 0, -4, 4, 0, 6, -24, 0, 8, 8, 0, 4, 18, 0, -16, -12, 0, -24, 24, 0, 7, -16, 0, 8, -6, 0, 44, -8, 0, 18, -24, 0, -34, 32, 0, -12, -66, 0, -40, 48, 0, 24, 120, 0, -33, -14, 0, -16, -54, 0, 72, -16, 0, -6, -48, 0, 50, -88, 0, -8, 48, 0, 8, -36
OFFSET
1,2
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
FORMULA
Expansion of eta(q)^2 * eta(q^3)^2 * eta(q^6)^3 / eta(q^2) in powers of q.
Euler transform of period 6 sequence [-2, -1, -4, -1, -2, -6, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = 34992^(1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g(t) is g.f. for A122407.
G.f.: x * Product_{k>0} (1 - x^k)^2 * (1 - x^(3*k))^2 * (1 - x^(6*k))^3 / (1 - x^(2*k)).
a(3*n) = 0. a(3*n + 1) = A116418(n). a(3*n + 2) = -2 * A122407(n).
EXAMPLE
G.f. = q - 2*q^2 - 2*q^4 + 6*q^5 - 4*q^7 + 4*q^8 + 6*q^10 - 24*q^11 + 8*q^13 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; Rest[CoefficientList[Series[eta[q]^2 *eta[q^3]^2*eta[q^6]^3/eta[q^2], {q, 0, 50}], q]] (* G. C. Greubel, Aug 11 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^3 + A)^2 * eta(x^6 + A)^3 / eta(x^2 + A), n))};
CROSSREFS
Sequence in context: A212085 A265882 A324253 * A186634 A363910 A139213
KEYWORD
sign
AUTHOR
Michael Somos, Feb 25 2012
EXTENSIONS
a(40) corrected by Seiichi Manyama, Jan 09 2017
STATUS
approved