login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A116418 Expansion of a newform level 18 weight 3 and character [3]. 3
1, -2, -4, 6, 8, 4, -16, -24, 7, 8, 44, 18, -34, -12, -40, 24, -33, -16, 72, -6, 50, -8, 8, -24, -16, 32, -76, -66, -54, 48, -32, 120, 176, -14, -28, -54, 56, -16, -72, -48, -167, -88, 92, 48, 64, -36, 152, 72, 18, 68, -148, 96, -82, 24, 56, -168, -105, 80, -28, -18, -232, -48, 216, -96, 206, 66, 20, -42, 198, 32 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..69.

W. Stein, Modular Forms Database.

FORMULA

Expansion of q^(-1/3) * b(q) * c(q) * b(q^2) / 3 in powers of q where b(), c() are cubic AGM theta functions.

Expansion of q^(-1/3) * eta(q)^2 * eta(q^2)^3 * eta(q^3)^2 / eta(q^6) in powers of q.

Euler transform of period 6 sequence [ -2, -5, -4, -5, -2, -6, ...].

G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = 3888^(1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A208384.

G.f.: Product_{k>0} (1 - x^k)^2 * (1 - x^(2*k))^3 * (1 - x^(3*k))^2 / (1 - x^(6*k)).

a(n) = A208384(3*n + 1) = A208385(3*n + 1).

a(2*n + 1) = -2 * A122407(n). - Michael Somos, Mar 30 2015

EXAMPLE

G.f. = 1 - 2*x - 4*x^2 + 6*x^3 + 8*x^4 + 4*x^5 - 16*x^6 - 24*x^7 + 7*x^8 + ...

G.f. = q - 2*q^4 - 4*q^7 + 6*q^10 + 8*q^13 + 4*q^16 - 16*q^19 - 24*q^22 +...

MATHEMATICA

s[n_] := Series[Product[(1-x^k)^2*(1-x^(2*k))^3*(1-x^(3*k))^2/(1-x^(6*k)), {k, 1, n}], {x, 0, n}] // Normal; a[k_] := SeriesCoefficient[s[n], {x, 0, k}]; a[0]=1; Table[a[n], {n, 0, 69}] (* Jean-Fran├žois Alcover, Feb 04 2014 *)

a[ n_] := SeriesCoefficient[ QPochhammer[ x]^2 QPochhammer[ x^2]^3 QPochhammer[ x^3]^2 / QPochhammer[ x^6], {x, 0, n}]; (* Michael Somos, Mar 30 2015 *)

PROG

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^2 + A)^3 * eta(x^3 + A)^2 / eta(x^6 + A), n))};

(MAGMA) A := Basis( ModularForms( Gamma1(18), 3), 210); A[2] - 2*A[5] - 4*A[8] + 6*A[11] + 8*A[14] + 4*A[17] - 16*A[20] - 24*A[23]; /* Michael Somos, Mar 30 2015 */

CROSSREFS

Cf. A122407, A208384, A208385.

Sequence in context: A064745 A218454 A115425 * A122640 A185361 A245186

Adjacent sequences:  A116415 A116416 A116417 * A116419 A116420 A116421

KEYWORD

sign

AUTHOR

Michael Somos, Feb 13 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 11:58 EST 2016. Contains 279001 sequences.