login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A116418 Expansion of a newform level 18 weight 3 and character [3]. 3
1, -2, -4, 6, 8, 4, -16, -24, 7, 8, 44, 18, -34, -12, -40, 24, -33, -16, 72, -6, 50, -8, 8, -24, -16, 32, -76, -66, -54, 48, -32, 120, 176, -14, -28, -54, 56, -16, -72, -48, -167, -88, 92, 48, 64, -36, 152, 72, 18, 68, -148, 96, -82, 24, 56, -168, -105, 80, -28, -18, -232, -48, 216, -96, 206, 66, 20, -42, 198, 32 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..69.

W. Stein, Modular Forms Database.

FORMULA

Expansion of q^(-1/3) * b(q) * c(q) * b(q^2) / 3 in powers of q where b(), c() are cubic AGM theta functions.

Expansion of q^(-1/3) * eta(q)^2 * et(q^2)^3 * eta(q^3)^2 / eta(q^6) in powers of q.

Euler transform of period 6 sequence [ -2, -5, -4, -5, -2, -6, ...].

G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = 3888^(1/2) (t/i)^3 g(t) where q = exp(2 pi i t) and g(t) is g.f. for A208384.

G.f.: Product_{k>0} (1 - x^k)^2 * (1 - x^(2*k))^3 * (1 - x^(3*k))^2 / (1 - x^(6*k)).

a(n) = A208384(3*n + 1) = A208385(3*n + 1).

EXAMPLE

1 - 2*x - 4*x^2 + 6*x^3 + 8*x^4 + 4*x^5 - 16*x^6 - 24*x^7 + 7*x^8 + ...

q - 2*q^4 - 4*q^7 + 6*q^10 + 8*q^13 + 4*q^16 - 16*q^19 - 24*q^22 +...

MATHEMATICA

s[n_] := Series[Product[(1-x^k)^2*(1-x^(2*k))^3*(1-x^(3*k))^2/(1-x^(6*k)), {k, 1, n}], {x, 0, n}] // Normal; a[k_] := SeriesCoefficient[s[n], {x, 0, k}]; a[0]=1; Table[a[n], {n, 0, 69}] (* Jean-François Alcover, Feb 04 2014 *)

PROG

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^2 + A)^3 * eta(x^3 + A)^2 / eta(x^6 + A), n))}

CROSSREFS

Cf. A208384, A208385.

Sequence in context: A064745 A218454 A115425 * A122640 A185361 A230865

Adjacent sequences:  A116415 A116416 A116417 * A116419 A116420 A116421

KEYWORD

sign

AUTHOR

Michael Somos, Feb 13 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 23 14:18 EDT 2014. Contains 240931 sequences.