|
|
A116421
|
|
a(n) = 2^(n-1)*binomial(2n-1,n-1)^2.
|
|
1
|
|
|
0, 1, 18, 400, 9800, 254016, 6830208, 188457984, 5300380800, 151289881600, 4369251780608, 127394382495744, 3743979352236032, 110768619888640000, 3295931587706880000, 98555678764852838400, 2959750227906986803200
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..100
|
|
FORMULA
|
G.f.: 1+(K(32x)-1)/4 where K(k)=Elliptic_F(pi/2,k) is the complete Elliptic integral of the first kind;
e.g.f.: BesselI(0, 2*sqrt(2)x)*BesselI(1, 2*sqrt(2)x)/sqrt(2);
a(n) = 2^(n+1)*(binomial(2n,n)/4)^2 - 0^n/8.
Conjecture: n^2*a(n) - (2*n-1)^2*a(n-1) = 0. - R. J. Mathar, Nov 16 2011
|
|
PROG
|
(Magma) [2^(n-1)*Binomial(2*n-1, n-1)^2: n in [0..20]]; // Vincenzo Librandi, Nov 17 2011
|
|
CROSSREFS
|
Cf. A060150.
Sequence in context: A252888 A159647 A111454 * A298465 A260655 A318598
Adjacent sequences: A116418 A116419 A116420 * A116422 A116423 A116424
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Paul Barry, Feb 14 2006
|
|
STATUS
|
approved
|
|
|
|