login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116424
Triangle read by rows: T(n,k) = the number of Dyck paths of semilength n with k UDUU's, 0 <= k <= floor((n-1)/2).
3
1, 1, 2, 4, 1, 9, 5, 22, 19, 1, 57, 66, 9, 154, 221, 53, 1, 429, 729, 258, 14, 1223, 2391, 1131, 116, 1, 3550, 7829, 4652, 745, 20, 10455, 25638, 18357, 4115, 220, 1, 31160, 84033, 70404, 20598, 1790, 27, 93802, 275765, 264563, 96286, 12104, 379, 1, 284789
OFFSET
0,3
COMMENTS
T(n,k) also gives the number of Dyck paths of semilength n with k UUDU's.
Column k=0 gives A105633(n-1) for n > 0.
LINKS
Jean-Luc Baril, Pamela E. Harris, Kimberly J. Harry, Matt McClinton, and José L. Ramírez, Enumerating runs, valleys, and peaks in Catalan words, arXiv:2404.05672 [math.CO], 2024. See p. 18.
Toufik Mansour, Statistics on Dyck Paths, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.5.
A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
FORMULA
T(n,k) = Sum_{i=k..floor((n-1)/2)} (-1)^(i+k) * binomial(i,k) * binomial(n-i,i) * binomial(2*n-3*i, n - 2*i -1)/(n-i), n >= 1.
G.f. G = G(t,z) satisfies G = 1 + z^2(1-t)G + z(1-z+tz)G^2.
EXAMPLE
Triangle begins:
00 : 1;
01 : 1;
02 : 2;
03 : 4, 1;
04 : 9, 5;
05 : 22, 19, 1;
06 : 57, 66, 9;
07 : 154, 221, 53, 1;
08 : 429, 729, 258, 14;
09 : 1223, 2391, 1131, 116, 1;
10 : 3550, 7829, 4652, 745, 20;
...
T(4,1) = 5 because there exist five Dyck paths of semilength 4 with one occurrence of UDUU : UDUUUDDD, UDUUDUDD, UDUUDDUD, UUDUUDDD, UDUDUUDD.
MAPLE
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, expand(b(x-1, y+1, [2, 2, 4, 2][t])*
`if`(t=4, z, 1) +b(x-1, y-1, [1, 3, 1, 3][t]))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
seq(T(n), n=0..15); # Alois P. Heinz, Jun 02 2014
MATHEMATICA
s = Series[((1 + (t - 1) z^2) - Sqrt[(1 + (t - 1) z^2)^2 - 4*z*(1 - z + z*t)])/(2*z*(1 - z + z*t)), {z, 0, 15}] // CoefficientList[#, z]&;
CoefficientList[#, t]& /@ s // Flatten (* updated by Jean-François Alcover, Feb 14 2021 *)
CROSSREFS
Sequence in context: A163240 A091958 A372879 * A372883 A135306 A242352
KEYWORD
nonn,tabf
AUTHOR
I. Tasoulas (jtas(AT)unipi.gr), Feb 15 2006
STATUS
approved