login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372879
Irregular triangle read by rows: T(n,k) is the number of flattened Catalan words of length n with exactly k short peak, with k >= 0.
2
1, 2, 4, 1, 9, 5, 22, 18, 1, 56, 58, 8, 145, 178, 41, 1, 378, 532, 173, 11, 988, 1563, 656, 73, 1, 2585, 4535, 2327, 381, 14, 6766, 13030, 7888, 1726, 114, 1, 17712, 37140, 25872, 7124, 709, 17, 46369, 105156, 82758, 27534, 3739, 164, 1, 121394, 296040, 259542, 101350, 17632, 1184, 20
OFFSET
1,2
LINKS
Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, Flattened Catalan Words, arXiv:2405.05357 [math.CO], 2024. See pp. 19-20.
FORMULA
G.f.: x*(1 - 2*x)/((1 - x)*(1 - 3*x + x^2*(1 - y))).
T(n,0) = A055588(n-1).
Sum_{k>=0} T(n,k) = A007051(n-1).
EXAMPLE
The irregular triangle begins:
1;
2;
4, 1;
9, 5;
22, 18, 1;
56, 58, 8;
145, 178, 41, 1;
378, 532, 173, 11;
988, 1563, 656, 73, 1;
...
T(6,2) = 8 since there are 8 flattened Catalan words of length 6 with 2 short peaks: 001010, 010100, 010101, 010010, 010120, 010121, 012010, and 012121.
MATHEMATICA
T[n_, k_]:=SeriesCoefficient[x(1-2x)/((1-x)(1-3x+x^2(1-y))), {x, 0, n}, {y, 0, k}]; Table[T[n, k], {n, 14}, {k, 0, Floor[(n-1)/2]}]//Flatten
CROSSREFS
Cf. A007051 (row sums), A055588, A371965, A372883, A372884.
Sequence in context: A344363 A163240 A091958 * A116424 A372883 A135306
KEYWORD
nonn,tabf
AUTHOR
Stefano Spezia, May 15 2024
STATUS
approved