The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055588 a(n) = 3*a(n-1) - a(n-2) - 1 with a(0) = 1 and a(1) = 2. 17
 1, 2, 4, 9, 22, 56, 145, 378, 988, 2585, 6766, 17712, 46369, 121394, 317812, 832041, 2178310, 5702888, 14930353, 39088170, 102334156, 267914297, 701408734, 1836311904, 4807526977, 12586269026, 32951280100, 86267571273 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of directed column-convex polyominoes with area n+2 and having two cells in the bottom row. - Emeric Deutsch, Jun 14 2001 a(n) is the length of the list generated by the substitution: 3->3, 4->(3,4,6), 6->(3,4,6,6): {3, 4}, {3, 3, 4, 6}, {3, 3, 3, 4, 6, 3, 4, 6, 6}, {3, 3, 3, 3, 4, 6, 3, 4, 6, 6, 3, 3, 4, 6, 3, 4, 6, 6, 3, 4, 6, 6}, etc. - Wouter Meeussen, Nov 23 2003 Equals row sums of triangle A144955. - Gary W. Adamson, Sep 27 2008 Equals the INVERT transform of A034943 and the INVERTi transform of A094790. - Gary W. Adamson, Apr 01 2011 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 E. Barcucci, R. Pinzani and R. Sprugnoli, Directed column-convex polyominoes by recurrence relations, Lecture Notes in Computer Science, No. 668, Springer, Berlin (1993), pp. 282-298. Sergi Elizalde, Symmetric peaks and symmetric valleys in Dyck paths, arXiv:2008.05669 [math.CO], 2020. Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy] Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020. M. M. Mogbonju, I. A. Ogunleke, and O. A. Ojo, Graphical Representation Of Conjugacy Classes In The Order-Preserving Full Transformation Semigroup, International Journal of Scientific Research and Engineering Studies (IJSRES), Volume 1(5) (2014), ISSN: 2349-8862. László Németh, Hyperbolic Pascal pyramid, arXiv:1511.02067 [math.CO], 2015 (1st line of Table 1 is 3*a(n-2)). László Németh, Pascal pyramid in the space H^2 x R, arXiv:1701.06022 [math.CO], 2017 (1st line of Table 1 is a(n-2)). Yan X Zhang, Four Variations on Graded Posets, arXiv:1508.00318 [math.CO], 2015. Index entries for linear recurrences with constant coefficients, signature (4,-4,1). FORMULA a(n) = (((3 + sqrt(5))/2)^n - ((3 - sqrt(5))/2)^n)/sqrt(5) + 1. a(n) = Sum_{m=0..n} A055587(n, m) = 1 + A001906(n). G.f.: (1 - 2*x)/((1 - 3*x + x^2)*(1-x)). From Paul Barry, Oct 07 2004: (Start) a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3); a(n) = Sum_{k=0..floor(n/3)} binomial(n-k, 2*k)2^(n-3*k). (End) From Paul Barry, Oct 26 2004: (Start) a(n) = Fibonacci(2*n) + 1. a(n) = Sum_{k=0..n} Fibonacci(2*k+2)*(2*0^(n-k) - 1). a(n) = A008346(2*n). (End) a(n) = Sum_{k=0..2*n+1} ((-1)^(k+1))*Fibonacci(k). - Michel Lagneau, Feb 03 2014 MAPLE g:=z/(1-3*z+z^2): gser:=series(g, z=0, 43): seq(abs(coeff(gser, z, n)+1), n=0..27); # Zerinvary Lajos, Mar 22 2009 MATHEMATICA Table[Fibonacci[2n] +1, {n, 0, 40}] (* or *) LinearRecurrence[{4, -4, 1}, {1, 2, 4}, 40] (* Vincenzo Librandi, Sep 30 2017 *) PROG (Sage) [lucas_number1(n, 3, 1)+1 for n in range(40)] # Zerinvary Lajos, Jul 06 2008 (Magma) [Fibonacci(2*n)+1: n in [0..40]]; // Vincenzo Librandi, Sep 30 2017 (PARI) vector(40, n, n--; fibonacci(2*n)+1) \\ G. C. Greubel, Jun 06 2019 (GAP) List([0..40], n-> Fibonacci(2*n)+1 ) # G. C. Greubel, Jun 06 2019 CROSSREFS Cf. A001906, A034943, A055587, A094790, A144955. Partial sums of A001519. Apart from the first term, same as A052925. Sequence in context: A196307 A107092 A352702 * A088456 A091561 A025265 Adjacent sequences: A055585 A055586 A055587 * A055589 A055590 A055591 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, May 30 2000; Barry E. Williams, Jun 04 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 08:35 EST 2022. Contains 358584 sequences. (Running on oeis4.)