login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135306
Triangle read by rows: T(n,k) = the number of Dyck paths of semilength n with k UDDU's.
3
1, 1, 2, 4, 1, 9, 5, 23, 17, 2, 63, 54, 15, 178, 177, 69, 5, 514, 594, 273, 49, 1515, 1997, 1056, 280, 14, 4545, 6698, 4077, 1308, 168, 13827, 22487, 15545, 5745, 1140, 42, 42540, 75701, 58377, 24695, 6105, 594, 132124, 255455, 216864, 103862, 29810
OFFSET
0,3
COMMENTS
From Emeric Deutsch, Dec 15 2007: (Start)
Row 0 has 1 term; row n (n >= 1) has ceiling(n/2) terms.
Row sums yield the Catalan numbers (A000108).
Column 0 yields A135307.
T(2n+1, n) = binomial(2n,n)/(n+1) (the Catalan numbers, A000108). (End)
LINKS
A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
FORMULA
From Emeric Deutsch, Dec 15 2007: (Start)
T(n,k) = (1/n)*binomial(n,k)*Sum_{j=k..floor((n-1)/2)} (-1)^(j-k)*binomial(n-k, j-k)*binomial(2n-3j, n-j+1).
G.f.: G = G(t,z) satisfies z*G^3 - ((1-t)*z+1)*G^2 + (1+2*(1-t)*z)*G - (1-t)*z = 0. (End)
EXAMPLE
Triangle begins:
1;
1;
2;
4, 1;
9, 5;
23, 17, 2;
63, 54, 15;
178, 177, 69, 5;
514, 594, 273, 49;
1515, 1997, 1056, 280, 14;
4545, 6698, 4077, 1308, 168;
...
T(4,1) = 5 because we have U(UDDU)DUD, U(UDDU)UDD, UU(UDDU)DD, UDU(UDDU)D and UUD(UDDU)D (the UDDU's are shown between parentheses).
MAPLE
A135306 := proc(n, k) if n =0 then 1 ; else add((-1)^(j-k)*binomial(n-k, j-k)*binomial(2*n-3*j, n-j+1), j=k..floor((n-1)/2)) ; %*binomial(n, k)/n ; fi ; end: for n from 0 to 20 do for k from 0 to max(0, (n-1)/2) do printf("%a, ", A135306(n, k)) ; od: od: # R. J. Mathar, Dec 08 2007
T:=proc(n, k) options operator, arrow: binomial(n, k)*(sum((-1)^(j-k)*binomial(n-k, j-k)*binomial(2*n-3*j, n-j+1), j=k..floor((1/2)*n-1/2)))/n end proc: 1; for n to 13 do seq(T(n, k), k=0..ceil((n-2)*1/2)) end do; # yields sequence in triangular form; Emeric Deutsch, Dec 15 2007
MATHEMATICA
T[n_, k_] := Binomial[n, k]*Sum[(-1)^(j-k)*Binomial[n-k, j-k]*Binomial[2*n - 3*j, -j+n+1], {j, k, (n-1)/2}]/n; T[0, 0] = 1; Table[T[n, k], {n, 0, 13}, {k, 0, If[n == 0, 0, Quotient[n-1, 2]]}] // Flatten (* Jean-François Alcover, Nov 27 2014, after Emeric Deutsch *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Dec 07 2007
EXTENSIONS
More terms from R. J. Mathar and Emeric Deutsch, Dec 08 2007
STATUS
approved