login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = the number of Dyck paths of semilength n with k UDDU's.
3

%I #29 Nov 16 2019 06:03:06

%S 1,1,2,4,1,9,5,23,17,2,63,54,15,178,177,69,5,514,594,273,49,1515,1997,

%T 1056,280,14,4545,6698,4077,1308,168,13827,22487,15545,5745,1140,42,

%U 42540,75701,58377,24695,6105,594,132124,255455,216864,103862,29810

%N Triangle read by rows: T(n,k) = the number of Dyck paths of semilength n with k UDDU's.

%C From _Emeric Deutsch_, Dec 15 2007: (Start)

%C Row 0 has 1 term; row n (n >= 1) has ceiling(n/2) terms.

%C Row sums yield the Catalan numbers (A000108).

%C Column 0 yields A135307.

%C T(2n+1, n) = binomial(2n,n)/(n+1) (the Catalan numbers, A000108). (End)

%H Alois P. Heinz, <a href="/A135306/b135306.txt">Rows n = 0..200, flattened</a>

%H A. Sapounakis, I. Tasoulas and P. Tsikouras, <a href="http://dx.doi.org/10.1016/j.disc.2007.03.005">Counting strings in Dyck paths</a>, Discrete Math., 307 (2007), 2909-2924.

%F From _Emeric Deutsch_, Dec 15 2007: (Start)

%F T(n,k) = (1/n)*binomial(n,k)*Sum_{j=k..floor((n-1)/2)} (-1)^(j-k)*binomial(n-k, j-k)*binomial(2n-3j, n-j+1).

%F G.f.: G = G(t,z) satisfies z*G^3 - ((1-t)*z+1)*G^2 + (1+2*(1-t)*z)*G - (1-t)*z = 0. (End)

%e Triangle begins:

%e 1;

%e 1;

%e 2;

%e 4, 1;

%e 9, 5;

%e 23, 17, 2;

%e 63, 54, 15;

%e 178, 177, 69, 5;

%e 514, 594, 273, 49;

%e 1515, 1997, 1056, 280, 14;

%e 4545, 6698, 4077, 1308, 168;

%e ...

%e T(4,1) = 5 because we have U(UDDU)DUD, U(UDDU)UDD, UU(UDDU)DD, UDU(UDDU)D and UUD(UDDU)D (the UDDU's are shown between parentheses).

%p A135306 := proc(n,k) if n =0 then 1 ; else add((-1)^(j-k)*binomial(n-k,j-k)*binomial(2*n-3*j,n-j+1),j=k..floor((n-1)/2)) ; %*binomial(n,k)/n ; fi ; end: for n from 0 to 20 do for k from 0 to max(0,(n-1)/2) do printf("%a, ",A135306(n,k)) ; od: od: # _R. J. Mathar_, Dec 08 2007

%p T:=proc(n,k) options operator, arrow: binomial(n,k)*(sum((-1)^(j-k)*binomial(n-k,j-k)*binomial(2*n-3*j,n-j+1),j=k..floor((1/2)*n-1/2)))/n end proc: 1; for n to 13 do seq(T(n,k),k=0..ceil((n-2)*1/2)) end do; # yields sequence in triangular form; _Emeric Deutsch_, Dec 15 2007

%t T[n_, k_] := Binomial[n, k]*Sum[(-1)^(j-k)*Binomial[n-k, j-k]*Binomial[2*n - 3*j, -j+n+1], {j, k, (n-1)/2}]/n; T[0, 0] = 1; Table[T[n, k], {n, 0, 13}, {k, 0, If[n == 0, 0, Quotient[n-1, 2]]}] // Flatten (* _Jean-François Alcover_, Nov 27 2014, after _Emeric Deutsch_ *)

%Y Cf. A000108, A135307, A243752.

%K nonn,tabf

%O 0,3

%A _N. J. A. Sloane_, Dec 07 2007

%E More terms from _R. J. Mathar_ and _Emeric Deutsch_, Dec 08 2007