login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371965
a(n) is the sum of all peaks in the set of Catalan words of length n.
8
0, 0, 0, 1, 6, 27, 111, 441, 1728, 6733, 26181, 101763, 395693, 1539759, 5997159, 23381019, 91244934, 356427459, 1393585779, 5453514729, 21358883439, 83718027429, 328380697629, 1288947615849, 5062603365999, 19896501060225, 78239857877649, 307831771279549, 1211767933187601
OFFSET
0,5
LINKS
Jean-Luc Baril, Pamela E. Harris, Kimberly J. Harry, Matt McClinton, and José L. Ramírez, Enumerating runs, valleys, and peaks in Catalan words, arXiv:2404.05672 [math.CO], 2024. See Corollary 4.7, p. 19.
FORMULA
G.f.: (1 - 3*x - (1 - x)*sqrt(1 - 4*x))/(2*(1 - x)*sqrt(1 - 4*x)).
a(n) = Sum_{i=1..n-1} binomial(2*(n-i)-1,n-i-2).
a(n) ~ 2^(2*n)/(6*sqrt(Pi*n)).
a(n)/A371963(n) ~ 1.
a(n) - a(n-1) = A002054(n-2).
From Mélika Tebni, Jun 15 2024: (Start)
E.g.f.: (exp(2*x)*BesselI(0,2*x)-1)/2 - exp(x)*Integral_{x=-oo..oo} BesselI(0,2*x)*exp(x) dx.
a(n) = binomial(2*n,n)*(1/2 + hypergeom([1,n+1/2],[n+1],4)) + i/sqrt(3) - 0^n/2.
a(n) = (3*A106191(n) + A006134(n) + 4*0^n) / 8.
a(n) = A281593(n) - (A000984(n) + 0^n) / 2. (End)
EXAMPLE
a(3) = 1 because there is 1 Catalan word of length 3 with one peak: 010.
a(4) = 6 because there are 6 Catalan words of length 4 with one peak: 0010, 0100, 0101, 0110, 0120, and 0121 (see Figure 10 at p. 19 in Baril et al.).
MAPLE
a:= proc(n) option remember; `if`(n<3, 0,
a(n-1)+binomial(2*n-3, n-3))
end:
seq(a(n), n=0..28); # Alois P. Heinz, Apr 15 2024
# Second Maple program:
A371965 := series((exp(2*x)*BesselI(0, 2*x)-1)/2-exp(x)*(int(BesselI(0, 2*x)*exp(x), x)), x = 0, 29):
seq(n!*coeff(A371965, x, n), n = 0 .. 28); # Mélika Tebni, Jun 15 2024
MATHEMATICA
CoefficientList[Series[(1-3x-(1-x)Sqrt[1-4x])/(2(1-x) Sqrt[1-4x]), {x, 0, 28}], x]
PROG
(Python)
from math import comb
def A371965(n): return sum(comb((n-i<<1)-3, n-i-3) for i in range(n-2)) # Chai Wah Wu, Apr 15 2024
CROSSREFS
Cf. A002054.
Sequence in context: A003517 A108958 A005284 * A198694 A220101 A014825
KEYWORD
nonn
AUTHOR
Stefano Spezia, Apr 14 2024
STATUS
approved