login
A106191
Expansion of sqrt(1-4x)/(1-x).
10
1, -1, -3, -7, -17, -45, -129, -393, -1251, -4111, -13835, -47427, -164999, -581023, -2066823, -7415703, -26805393, -97520733, -356810313, -1312087713, -4846614093, -17974854933, -66907388973, -249872516253, -935991743553, -3515800038201, -13239692841105
OFFSET
0,3
COMMENTS
Row sums of number triangle A106190. Partial sums of A002420.
For n >= 1, the absolute values also give the iterates of A122237, starting from 0. (A122237(0), A122237(A122237(0)), A122237(A122237(A122237(0))), ...), this stems from the fact that the sequence gives the positions of terms with binary expansion 1(10){n-1}0 in A014486 (see A080675).
FORMULA
a(n) = Sum_{k=0..n} binomial(2k, k)/(1-2k).
G.f.: (2/(1-x))/G(0), where G(k) = 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
D-finite with recurrence: a(0)=1, a(1)=-1; for n>1, a(n) = (1/n)*((5*n-6)*a(n-1) - (4*n-6)*a(n-2)). - Tani Akinari, Aug 25 2013
CROSSREFS
|a(n)| = A080300(A080675(n)) = A075161(A001348(n)) (for n >= 1) = A075163(A000244(A008578(n-2))) = A014137(n-1)+A014138(n-2) = 2*A014137(n-1)-1, for n >= 2 (because binomial(2n+2, n+1)/(2n+1) = 2*A000108(n)).
Sequence in context: A261235 A211281 A233656 * A062810 A113985 A309302
KEYWORD
easy,sign
AUTHOR
Paul Barry, Apr 24 2005
EXTENSIONS
Barry's formula made more succinct, as well as comments regarding interpretation as absolute values added by Antti Karttunen, Sep 14 2006
STATUS
approved