|
|
A014138
|
|
Partial sums of (Catalan numbers starting 1, 2, 5, ...).
|
|
294
|
|
|
0, 1, 3, 8, 22, 64, 196, 625, 2055, 6917, 23713, 82499, 290511, 1033411, 3707851, 13402696, 48760366, 178405156, 656043856, 2423307046, 8987427466, 33453694486, 124936258126, 467995871776, 1757900019100
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Number of paths starting from the root in all ordered trees with n+1 edges (a path is a nonempty tree with no vertices of outdegree greater than 1). Example: a(2)=8 because the five trees with three edges have altogether 1+0+2+2+3=8 paths hanging from the roots. - Emeric Deutsch, Oct 20 2002
a(n) is the sum of the mean maximal pyramid size over all Dyck (n+1)-paths. Also, a(n) = sum of the mean maximal sawtooth size over all Dyck (n+1)-paths. A pyramid (resp. sawtooth) in a Dyck path is a subpath of the form U^k D^k (resp. (UD)^k) with k>=1 and k is its size. For example, the maximal pyramids in the Dyck path uUUDD|UD|UDdUUDD are indicated by uppercase letters (and separated by a vertical bar). Their sizes are 2,1,1,2 left to right and the mean maximal pyramid size of the path is 6/4 = 3/2. Also, the mean maximal sawtooth size of this path is (1+2+1)/3 = 4/3. - David Callan, Jun 07 2006
p^2 divides a(p^2-1) for prime p>3. p^2 divides a(p^3-1) for prime p=7,13,19,... prime p in the form p=6k+1. - Alexander Adamchuk, Jul 03 2006
a(n) is also the sum of the numbers in Catalan's triangle (A009766) from row 0 to row n. - Patrick Labarque, Jul 27 2010
Equals the Catalan sequence starting (1, 1, 2, ...) convolved with A014137 starting (1, 2, 4, 9, ...). - Gary W. Adamson, May 20 2013
a(n) is the number of parking functions of size n avoiding the patterns 132, 213, and 231. - Lara Pudwell, Apr 10 2023
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1-2*x-sqrt(1-4x))/(2x(1-x)) = (C(x)-1)/(1-x) where C(x) is the generating function for the Catalan numbers. - Rocio Blanco, Apr 02 2007
D-finite with recurrence: (n+1)*a(n) + (1-5n)*a(n-1) + 2*(2n-1)*a(n-2) = 0. - R. J. Mathar, Dec 14 2011
Equals the Catalan sequence starting (1, 1, 2, ...) convolved with A014137 starting (1, 2, 4, 9, ...). - Gary W. Adamson, May 20 2013
G.f.: 1/x - G(0)/(1-x)/x, where G(k)= 1 - x/(1 - x/(1 - x/(1 - x/G(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013
G.f.: 1/x - T(0)/(2*x*(1-x)), where T(k) = 2*x*(2*k+1)+ k+2 - 2*x*(k+2)*(2*k+3)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 27 2013
|
|
MAPLE
|
a:=n->sum((binomial(2*j, j)/(j+1)), j=1..n): seq(a(n), n=0..24); # Zerinvary Lajos, Dec 01 2006
|
|
MATHEMATICA
|
Join[{0}, Accumulate[CatalanNumber[Range[30]]]] (* Harvey P. Dale, Jan 25 2013 *)
CoefficientList[Series[(1 - 2 x - (1 - 4 x)^(1/2))/(2 x (1 - x)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 21 2015 *)
a[0] := 0; a[n_] := Sum[CatalanNumber[k], {k, 1, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jan 14 2017 *)
|
|
PROG
|
(Haskell)
a014138 n = a014138_list !! n
(Python)
from __future__ import division
for n in range(1, 10**2):
s += b
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,nice
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Edited by Max Alekseyev, Sep 13 2009 (including adding an initial 0)
|
|
STATUS
|
approved
|
|
|
|