login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339288
Number of essentially series oriented series-parallel networks with n elements and without multiple unit elements in parallel.
5
0, 1, 1, 3, 8, 22, 64, 189, 577, 1788, 5642, 18016, 58213, 189792, 623913, 2065219, 6878429, 23032917, 77500237, 261892491, 888439320, 3024510467, 10329241959, 35379140285, 121502993735, 418306868672, 1443409882944, 4991122973019, 17292424070839, 60021140494647, 208684858267921
OFFSET
1,4
COMMENTS
See A339290 for additional details.
FORMULA
G.f.: P(x)^2/(1 - P(x)) where P(x) is the g.f. of A339289.
G.f.: B(x)^2/(1 + B(x)) where B(x) is the g.f. of A339290.
EXAMPLE
In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(2) = 1: (oo).
a(3) = 1: (ooo).
a(4) = 3: (oooo), (o(o|oo)), ((o|oo)o).
a(5) = 8: (ooooo), (oo(o|oo)), (o(o|oo)o), ((o|oo)oo), (o(o|ooo)), (o(oo|oo)), ((o|ooo)o), ((oo|oo)o).
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); Vec(p - p/(1+p), -n)}
CROSSREFS
Cf. A339154, A339289, A339290, A339291 (achiral), A339294 (unoriented).
Sequence in context: A164934 A047926 A192681 * A014138 A099324 A372528
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Dec 07 2020
STATUS
approved