login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047926
a(n) = (3^(n+1) + 2*n + 1)/4.
16
1, 3, 8, 22, 63, 185, 550, 1644, 4925, 14767, 44292, 132866, 398587, 1195749, 3587234, 10761688, 32285049, 96855131, 290565376, 871696110, 2615088311, 7845264913, 23535794718, 70607384132, 211822152373, 635466457095, 1906399371260
OFFSET
0,2
COMMENTS
Density of regular language L{0}* over {0,1,2,3} (i.e., number of strings of length n in L), where L is described by regular expression with c=3: Sum_{i=1..c} Product_{j=1..i} (j(1+...+j)*), where "Sum" stands for union and "Product" for concatenation. I.e., L = L((11*+11*2(1+2)*+11*2(1+2)*3(1+2+3)*)0*) - Nelma Moreira, Oct 10 2004
Conjecture: Number of representations of 3^(2n) as a sum a^2 + b^2 + c^2 with 0 < a <= b <= c. That is, a(1) = 3 because 3^2 = 1^2 + 2^2 + 2^2, a(2) = 3 because 3^4 = 1^2 + 4^2 + 8^2 = 3^2 + 6^2 + 6^2 = 4^2 + 4^2 + 7^2. - Zak Seidov, Mar 01 2012
REFERENCES
M. Aigner, Combinatorial Search, Wiley, 1988, see Exercise 6.4.5.
LINKS
Nelma Moreira and Rogerio Reis, On the density of languages representing finite set partitions, Technical Report DCC-2004-07, August 2004, DCC-FC& LIACC, Universidade do Porto.
N. Moreira and R. Reis, On the Density of Languages Representing Finite Set Partitions, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.8.
FORMULA
From Paul Barry, Sep 03 2003: (Start)
a(n) = Sum_{k=0..n} (3^k + 1)/2. Partial sums of A007051.
G.f.: (1 - 2*x)/((1 - x)^2*(1 - 3*x)). (End)
For c = 3, a(c,n) = g(1,c)*n + Sum_{k=2..c} g(k,c)*k*(k^n - 1)/(k-1), where g(1,1) = 1, g(1,c) = g(1,c-1) + (-1)^(c-1)/(c-1)! for c > 1, and g(k,c) = g(k-1, c-1)/k, for c > 1 and 2 <= k <= c. - Nelma Moreira, Oct 10 2004
a(n+1) = 3*a(n) - n. - Franklin T. Adams-Watters, Jul 05 2014
E.g.f.: exp(x)*(1 + 2*x + 3*exp(2*x))/4. - Stefano Spezia, Sep 26 2023
MATHEMATICA
Table[(3^(n+1)+2n+1)/4, {n, 0, 30}] (* or *) LinearRecurrence[{5, -7, 3}, {1, 3, 8}, 30] (* Harvey P. Dale, Apr 19 2019 *)
PROG
(Sage) [(gaussian_binomial(n, 1, 3)+n)/2 for n in range(1, 28)] # Zerinvary Lajos, May 29 2009
(Magma) [(3^(n+1)+2*n+1)/4: n in [0..40]]; // Vincenzo Librandi, May 02 2011
(PARI) a(n)=(3^(n+1)+2*n+1)/4 \\ Charles R Greathouse IV, Mar 02 2012
CROSSREFS
Cf. A007051.
Sequence in context: A336990 A317997 A164934 * A192681 A339288 A014138
KEYWORD
nonn,easy
STATUS
approved