OFFSET
0,2
COMMENTS
Density of regular language L{0}* over {0,1,2,3} (i.e., number of strings of length n in L), where L is described by regular expression with c=3: Sum_{i=1..c} Product_{j=1..i} (j(1+...+j)*), where "Sum" stands for union and "Product" for concatenation. I.e., L = L((11*+11*2(1+2)*+11*2(1+2)*3(1+2+3)*)0*) - Nelma Moreira, Oct 10 2004
Conjecture: Number of representations of 3^(2n) as a sum a^2 + b^2 + c^2 with 0 < a <= b <= c. That is, a(1) = 3 because 3^2 = 1^2 + 2^2 + 2^2, a(2) = 3 because 3^4 = 1^2 + 4^2 + 8^2 = 3^2 + 6^2 + 6^2 = 4^2 + 4^2 + 7^2. - Zak Seidov, Mar 01 2012
REFERENCES
M. Aigner, Combinatorial Search, Wiley, 1988, see Exercise 6.4.5.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Nelma Moreira and Rogerio Reis, On the density of languages representing finite set partitions, Technical Report DCC-2004-07, August 2004, DCC-FC& LIACC, Universidade do Porto.
N. Moreira and R. Reis, On the Density of Languages Representing Finite Set Partitions, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.8.
Index entries for linear recurrences with constant coefficients, signature (5,-7,3).
FORMULA
From Paul Barry, Sep 03 2003: (Start)
a(n) = Sum_{k=0..n} (3^k + 1)/2. Partial sums of A007051.
G.f.: (1 - 2*x)/((1 - x)^2*(1 - 3*x)). (End)
For c = 3, a(c,n) = g(1,c)*n + Sum_{k=2..c} g(k,c)*k*(k^n - 1)/(k-1), where g(1,1) = 1, g(1,c) = g(1,c-1) + (-1)^(c-1)/(c-1)! for c > 1, and g(k,c) = g(k-1, c-1)/k, for c > 1 and 2 <= k <= c. - Nelma Moreira, Oct 10 2004
a(n+1) = 3*a(n) - n. - Franklin T. Adams-Watters, Jul 05 2014
E.g.f.: exp(x)*(1 + 2*x + 3*exp(2*x))/4. - Stefano Spezia, Sep 26 2023
MATHEMATICA
Table[(3^(n+1)+2n+1)/4, {n, 0, 30}] (* or *) LinearRecurrence[{5, -7, 3}, {1, 3, 8}, 30] (* Harvey P. Dale, Apr 19 2019 *)
PROG
(Sage) [(gaussian_binomial(n, 1, 3)+n)/2 for n in range(1, 28)] # Zerinvary Lajos, May 29 2009
(Magma) [(3^(n+1)+2*n+1)/4: n in [0..40]]; // Vincenzo Librandi, May 02 2011
(PARI) a(n)=(3^(n+1)+2*n+1)/4 \\ Charles R Greathouse IV, Mar 02 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved