|
|
A047929
|
|
a(n) = n^2*(n-1)*(n-2).
|
|
5
|
|
|
0, 18, 96, 300, 720, 1470, 2688, 4536, 7200, 10890, 15840, 22308, 30576, 40950, 53760, 69360, 88128, 110466, 136800, 167580, 203280, 244398, 291456, 345000, 405600, 473850, 550368, 635796, 730800, 836070, 952320, 1080288, 1220736
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,2
|
|
COMMENTS
|
There are 5 ways to put parentheses in the expression a - b - c - d: (a - (b - c)) - d, ((a - b) - c) - d, (a - b) - (c - d), a - (b - (c - d)), a - ((b - c) - d). This sequence describes how many sets of natural numbers [a,b,c,d] can be produced with the numbers {0,1,2,3,...,n} such that all the distinct expressions take different values. A045991 describes the similar process for a - b - c. For example, no sets can be produced with only 0's or only 0's and 1's; with {0,1,2,3}, 18 such sets can be produced. - Asher Auel, Jan 26 2000
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Wesley Ivan Hurt, May 22 2021
Sum_{n>=3} 1/a(n) = (Pi^2 - 9)/12.
Sum_{n>=3} (-1)^(n+1)/a(n) = Pi^2/24 + 2*log(2) - 7/4. (End)
|
|
MATHEMATICA
|
Drop[CoefficientList[Series[6 x^3*(3 + x)/(1 - x)^5, {x, 0, 34}], x], 2] (* Michael De Vlieger, May 21 2021 *)
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|