login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336990
Expansion of Product_{k>=1} 1/(1 - x^k / (1 - k*x)).
2
1, 1, 3, 8, 22, 62, 182, 560, 1822, 6316, 23467, 93762, 402989, 1858904, 9165303, 48065800, 266791060, 1560140592, 9573440644, 61431041813, 411006873603, 2859978776644, 20653331408062, 154494203986783, 1195107012223439, 9546189429869925, 78632580076861376, 667111706008969377
OFFSET
0,3
FORMULA
G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} 1 / (d * (1 - k/d * x)^d)).
MATHEMATICA
m = 27; CoefficientList[Series[Product[1/(1 - x^k/(1 - k*x)), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, Aug 10 2020 *)
PROG
(PARI) N=40; x='x+O('x^N); Vec(1/prod(k=1, N, 1-x^k/(1-k*x)))
(PARI) N=40; x='x+O('x^N); Vec(exp(sum(k=1, N, x^k*sumdiv(k, d, 1/(d*(1-k/d*x)^d)))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 10 2020
STATUS
approved