login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336991
Expansion of Product_{k>=1} (1 - x^k / (1 - k*x)).
2
1, -1, -2, -3, -5, -10, -27, -91, -350, -1459, -6466, -30258, -149051, -771157, -4181702, -23718221, -140437759, -866481074, -5561061327, -37066185842, -256190732502, -1833581728979, -13571059095383, -103744579461855, -818183156375886, -6649600332967494, -55635988924348030
OFFSET
0,3
FORMULA
G.f.: exp( - Sum_{k>=1} x^k * Sum_{d|k} 1 / (d * (1 - k/d * x)^d)).
MATHEMATICA
m = 26; CoefficientList[Series[Product[(1 - x^k/(1 - k*x)), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, Aug 10 2020 *)
PROG
(PARI) N=40; x='x+O('x^N); Vec(prod(k=1, N, 1-x^k/(1-k*x)))
(PARI) N=40; x='x+O('x^N); Vec(exp(-sum(k=1, N, x^k*sumdiv(k, d, 1/(d*(1-k/d*x)^d)))))
CROSSREFS
Convolution inverse of A336990.
Sequence in context: A296261 A133662 A204518 * A223545 A088938 A000617
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 10 2020
STATUS
approved