login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000617 Number of NP-equivalence classes of threshold functions of n or fewer variables.
(Formerly M0727 N0272)
4
2, 3, 5, 10, 27, 119, 1113, 29375, 2730166, 989913346 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

From Fabián Riquelme, Jun 01 2012: (Start)

NP-equivalence classes of threshold functions are equivalent to weighted games, in simple game theory.

The number for n=9 was first documented in the unpublished work:

N. Tautenhahn, Enumeration einfacher Spiele mit Anwendungen in der Stimmgewichtsverteilung, 2008. Master's thesis, University of Bayreuth, 269 pages (in German).

(End)

REFERENCES

S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 14.

S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=0..9.

S. Bolus, A QOBDD-based Approach to Simple Games, Dissertation, Doktor der Ingenieurwissenschaften der Technischen Fakultaet der Christian-Albrechts-Universitaet zu Kiel, 2012. - From N. J. A. Sloane, Dec 22 2012

I. Krohn, P. Sudhölter, Directed and weighted majority games, Math. Methods Operat. Res. 42 (2) (1995) 189-216, Table 1.

S. Kurz, On minimum sum representations for weighted voting games, arXiv:1103.1445v1 (2011).

S. Muroga, Threshold Logic and Its Applications, Wiley, NY, 1971 [Annotated scans of a few pages]

S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy]

Eda Uyanık, Olivier Sobrie, Vincent Mousseau, Marc Pirlot, Enumerating and categorizing positive Boolean functions separable by a k-additive capacity, Discrete Applied Mathematics, Vol. 229, 1 October 2017, p. 17-30. See Table 3.

CROSSREFS

Sequence in context: A336991 A223545 A088938 * A132183 A259878 A003504

Adjacent sequences: A000614 A000615 A000616 * A000618 A000619 A000620

KEYWORD

nonn,hard,more,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 31 15:55 EDT 2023. Contains 361668 sequences. (Running on oeis4.)