login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307599
Expansion of Product_{k>=1} (1 - x^k/(1 - x)).
6
1, -1, -2, -2, -1, 2, 6, 11, 15, 16, 11, -2, -26, -61, -105, -152, -192, -209, -183, -89, 98, 400, 830, 1385, 2035, 2715, 3314, 3668, 3556, 2703, 790, -2521, -7550, -14542, -23591, -34546, -46901, -59670, -71261, -79358, -80830, -71690, -47133, -1684, 70504, 175168, 317232
OFFSET
0,3
LINKS
FORMULA
G.f.: exp( - Sum_{k>=1} x^k * Sum_{d|k} 1/(d*(1-x)^d)).
MATHEMATICA
m = 46; CoefficientList[Series[Product[1 - x^k/(1 - x), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 14 2021 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, 1-x^k/(1-x)))
(PARI) N=66; x='x+O('x^N); Vec(exp(-sum(k=1, N, x^k*sumdiv(k, d, 1/(d*(1-x)^d)))))
CROSSREFS
Convolution inverse of A227682.
Sequence in context: A375062 A236144 A226328 * A162663 A005007 A188792
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 17 2019
STATUS
approved