OFFSET
0,3
COMMENTS
In triangle A126347, row n lists coefficients of q in B(n,q) that satisfies: B(n,q) = Sum_{k=0..n-1} C(n-1,k)*B(k,q)*q^k for n>0, with B(0,q) = 1; row sums equal the Bell numbers: B(n,1) = A000110(n).
Row sums of A253830. a(n) equals the number of colored compositions of n, as defined in A253830, whose associated color partition has distinct parts. An example is given below. - Peter Bala, Jan 20 2015
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..500 from Seiichi Manyama)
FORMULA
1 + Sum_{k>0} x^(k * (k + 1) / 2) / ((1 - x)^k * (1 - x) * (1 - x^2) ... (1 - x^k)). - Michael Somos, Aug 17 2008
G.f.: Product_{k>0} (1+x^k/(1-x)). - Vladeta Jovovic, Oct 05 2008
G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (-1)^(d+1)/(d*(1 - x)^d)). - Ilya Gutkovskiy, Apr 19 2019
EXAMPLE
a(5) = 12: The colored compositions (defined in A253830) of 5 whose color partitions have distinct parts are
5(c1), 5(c2), 5(c3), 5(c4), 5(c5),
1(c1) + 4(c2), 1(c1) + 4(c3), 1(c1) + 4(c4),
3(c1) + 2(c2),
2(c1) + 3(c2), 2(c1) + 3(c3), 2(c2) + 3(c3). - Peter Bala, Jan 20 2015
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 - x + x^k)/(1 - x), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 16 2019 *)
PROG
(PARI) {B(n, q)=if(n==0, 1, sum(k=0, n-1, binomial(n-1, k)*B(k, q)*q^k))}
{a(n)=Vec(B(n+1, 'q)+O('q^(n*(n-1)/2+1)))[n*(n-1)/2+1]}
(PARI) {a(n) = local(t); if( n<0, 0, t = 1; polcoeff( sum(k=1, (sqrtint(8*n + 1) - 1)\2, t = t * x^k / (1 - x) / (1 - x^k) + x * O(x^n), 1), n))} /* Michael Somos, Aug 17 2008 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 31 2006
STATUS
approved