login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126347
Triangle, read by rows, where row n lists coefficients of q in B(n,q) that satisfies: B(n,q) = Sum_{k=0..n-1} C(n-1,k)*B(k,q)*q^k for n>0, with B(0,q) = 1; row sums equal the Bell numbers: B(n,1) = A000110(n).
6
1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 4, 2, 1, 1, 1, 4, 6, 10, 9, 7, 7, 4, 2, 1, 1, 1, 5, 10, 20, 25, 26, 29, 26, 20, 14, 12, 7, 4, 2, 1, 1, 1, 6, 15, 35, 55, 71, 90, 101, 100, 89, 82, 68, 53, 38, 26, 20, 12, 7, 4, 2, 1, 1, 1, 7, 21, 56, 105, 161, 231, 302, 356, 379, 392, 384, 358, 314, 262
OFFSET
0,6
COMMENTS
Limit of reversed rows equals A126348. Largest term in rows equal A126349.
LINKS
Carl G. Wagner, Partition Statistics and q-Bell Numbers (q = -1), J. Integer Seqs., Vol. 7, 2004.
FORMULA
G.f. for row n: B(n,q) = 1/E_q*{0^n + Sum_{k>=1} [(q^k-1)/(q-1)]^n / q-Factorial(k)}, where q-Factorial(k) = Product_{j=1..k} [(q^j-1)/(q-1)] and where E_q = Sum_{n>=0} 1/q-Factorial(n) = Product_{n>=1} (1+(q-1)/q^n).
Sum_{k=0..n*(n-1)/2} (n+k) * T(n,k) = A346772(n). - Alois P. Heinz, Aug 02 2021
EXAMPLE
Number of terms in row n is: n*(n-1)/2 + 1.
Row functions B(n,q) begin:
B(0,q) = B(1,q) = 1;
B(1,q) = 1 + q;
B(2,q) = 1 + 2*q + q^2 + q^3;
B(3,q) = 1 + 3*q + 3*q^2 + 4*q^3 + 2*q^4 + q^5 + q^6.
Triangle begins:
1;
1;
1, 1;
1, 2, 1, 1;
1, 3, 3, 4, 2, 1, 1;
1, 4, 6, 10, 9, 7, 7, 4, 2, 1, 1;
1, 5, 10, 20, 25, 26, 29, 26, 20, 14, 12, 7, 4, 2, 1, 1;
1, 6, 15, 35, 55, 71, 90, 101, 100, 89, 82, 68, 53, 38, 26, 20, 12, 7, 4, 2, 1, 1; ...
MAPLE
b:= proc(n, m, t) option remember; `if`(n=0, x^t,
add(b(n-1, max(m, j), t+j) , j=1..m+1))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=n..degree(p)))(b(n, 0$2)):
seq(T(n), n=0..8); # Alois P. Heinz, Aug 02 2021
MATHEMATICA
B[0, _] = 1; B[n_, q_] := B[n, q] = Sum[Binomial[n-1, k] B[k, q] q^k, {k, 0, n-1}] // Expand; Table[CoefficientList[B[n, q], q], {n, 0, 8}] // Flatten (* Jean-François Alcover, Nov 08 2016 *)
PROG
(PARI) {B(n, q)=if(n==0, 1, sum(k=0, n-1, binomial(n-1, k)*B(k, q)*q^k))}
row(n)={Vec(B(n, 'q)+O('q^(n*(n-1)/2+1)))}
(PARI) /* Alternative formula for the n-th q-Bell number (row n): */ {B(n, q)=local(inf=100); round((0^n + sum(k=1, inf, ((q^k-1)/(q-1))^n/prod(i=1, k, (q^i-1)/(q-1)))) / prod(k=1, inf, 1 + (q-1)/q^k))}
CROSSREFS
Row sums give A000110.
Cf. A126348, A126349; factorial variant: A126470.
Cf. A346772.
Sequence in context: A374932 A344678 A079415 * A309240 A057001 A307689
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Dec 31 2006, May 28 2007
EXTENSIONS
Keyword:tabl changed to tabf - R. J. Mathar, Oct 21 2010
STATUS
approved