login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374932
Number T(n,k) of partitions of [n] such that the maximal block element sum equals k; triangle T(n,k), n>=0, n <= k <= A000217(n), read by rows.
1
1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 6, 6, 8, 9, 9, 5, 3, 3, 1, 1, 1, 12, 14, 20, 31, 26, 32, 19, 14, 11, 10, 5, 3, 3, 1, 1, 1, 26, 31, 59, 78, 111, 108, 113, 76, 67, 57, 39, 39, 21, 16, 12, 10, 5, 3, 3, 1, 1, 1, 57, 84, 140, 260, 321, 458, 427, 500, 326, 300, 284, 229, 182, 159, 107, 79, 64, 46, 41, 23, 17, 12, 10, 5, 3, 3, 1, 1, 1
OFFSET
0,5
EXAMPLE
T(5,7) = 8: 124|3|5, 12|34|5, 13|25|4, 14|25|3, 15|2|34, 1|25|34, 1|2|34|5, 1|25|3|4.
T(6,6) = 12: 123|4|5|6, 12|3|4|5|6, 13|24|5|6, 13|2|4|5|6, 14|23|5|6, 15|23|4|6, 1|23|4|5|6, 14|2|3|5|6, 15|24|3|6, 1|24|3|5|6, 15|2|3|4|6, 1|2|3|4|5|6.
T(6,7) = 14: 124|3|5|6, 12|34|5|6, 13|25|4|6, 16|23|4|5, 14|25|3|6, 16|24|3|5, 15|2|34|6, 16|25|34, 1|25|34|6, 16|2|34|5, 1|2|34|5|6, 16|25|3|4, 1|25|3|4|6, 16|2|3|4|5.
Triangle T(n,k) begins:
1;
1;
1, 1;
2, 1, 1, 1;
3, 3, 3, 3, 1, 1, 1;
6, 6, 8, 9, 9, 5, 3, 3, 1, 1, 1;
12, 14, 20, 31, 26, 32, 19, 14, 11, 10, 5, 3, 3, 1, 1, 1;
...
CROSSREFS
Row sums give A000110.
Main diagonal gives A375099.
Number of terms in row n is A000124(n-1) for n>=1.
Reversed rows converge to A294617.
Cf. A000217.
Sequence in context: A124772 A227543 A366920 * A344678 A079415 A126347
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Aug 01 2024
STATUS
approved