login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227543
Triangle defined by g.f. A(x,q) such that: A(x,q) = 1 + x*A(q*x,q)*A(x,q), as read by terms k=0..n*(n-1)/2 in rows n>=0.
40
1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 3, 2, 1, 1, 1, 4, 6, 7, 7, 5, 5, 3, 2, 1, 1, 1, 5, 10, 14, 17, 16, 16, 14, 11, 9, 7, 5, 3, 2, 1, 1, 1, 6, 15, 25, 35, 40, 43, 44, 40, 37, 32, 28, 22, 18, 13, 11, 7, 5, 3, 2, 1, 1, 1, 7, 21, 41, 65, 86, 102, 115, 118, 118, 113, 106, 96, 85, 73, 63, 53, 42, 34, 26, 20, 15, 11, 7, 5, 3, 2, 1, 1
OFFSET
0,6
COMMENTS
See related triangle A138158.
Row sums are the Catalan numbers (A000108), set q=1 in the g.f. to see this.
Antidiagonal sums equal A005169, the number of fountains of n coins.
The maximum in each row of the triangle is A274291. - Torsten Muetze, Nov 28 2018
The area between a Dyck path and the x-axis may be decomposed into unit area triangles of two types - up-triangles with vertices at the integer lattice points (x, y), (x+1, y+1) and (x+2, y) and down-triangles with vertices at the integer lattice points (x, y), (x-1, y+1) and (x+1, y+1). The table entry T(n,k) equals the number of Dyck paths of semilength n containing k down triangles. See the illustration in the Links section. Cf. A239927. - Peter Bala, Jul 11 2019
The row polynomials of this table are a q-analog of the Catalan numbers due to Carlitz and Riordan. For MacMahon's q-analog of the Catalan numbers see A129175. - Peter Bala, Feb 28 2023
LINKS
Paul D. Hanna and Seiichi Manyama, Table of n, a(n) for n = 0..9919 (rows n=0..39 of triangle, flattened). (first 1351 terms from Paul D. Hanna)
Luca Ferrari, Unimodality and Dyck paths, arXiv:1207.7295 [math.CO], 2012.
Stéphane Ouvry and Alexios P. Polychronakos, Exclusion statistics for particles with a discrete spectrum, arXiv:2105.14042 [cond-mat.stat-mech], 2021.
Hao Pan, A finite field approach to the Carlitz-Riordan q-Catalan numbers, Journal of Algebraic Combinatorics: An International Journal: Volume 56, Issue 4, Dec 2022, pp 1005-1009.
Thomas Prellberg, Area-perimeter generating functions of lattice walks: q-series and their asymptotics, Slides, School of Mathematical Sciences, Queen Mary, University of London, July 1, 2009.
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction.
FORMULA
G.f.: A(x,q) = 1/(1 - x/(1 - q*x/(1 - q^2*x/(1 - q^3*x/(1 - q^4*x/(1 -...)))))), a continued fraction.
G.f. satisfies: A(x,q) = P(x,q)/Q(x,q), where
P(x,q) = Sum_{n>=0} q^(n^2) * (-x)^n / Product_{k=1..n} (1-q^k),
Q(x,q) = Sum_{n>=0} q^(n*(n-1)) * (-x)^n / Product_{k=1..n} (1-q^k),
due to Ramanujan's continued fraction identity.
...
Sum_{k=0..n*(n-1)/2} T(n,k)*k = 2^(2*n-1) - C(2*n+1,n) + C(2*n-1,n-1) = A006419(n-1) for n>=1.
Logarithmic derivative of the g.f. A(x,q), wrt x, yields triangle A227532.
From Peter Bala, Jul 11 2019: (Start)
(n+1)th row polynomial R(n+1,q) = Sum_{k = 0..n} q^k*R(k,x)*R(n-k,q), with R(0,q) = 1.
1/A(q*x,q) is the generating function for the triangle A047998. (End)
Conjecture: b(n) = P(n, n) where b(n) is an integer sequence with g.f. B(x) = 1/(1 - f(0)*x/(1 - f(1)*x/(1 - f(2)*x/(1 - f(3)*x/(1 - f(4)*x/(1 -...)))))), P(n, k) = P(n-1, k) + f(n-k)*P(n, k-1) for 0 < k <= n with P(n, k) = 0 for k > n, P(n, 0) = 1 for n >= 0 and where f(n) is an arbitrary function. In fact for this sequence we have f(n) = q^n. - Mikhail Kurkov, Sep 26 2024
EXAMPLE
G.f.: A(x,q) = 1 + x*(1) + x^2*(1 + q) + x^3*(1 + 2*q + q^2 + q^3)
+ x^4*(1 + 3*q + 3*q^2 + 3*q^3 + 2*q^4 + q^5 + q^6)
+ x^5*(1 + 4*q + 6*q^2 + 7*q^3 + 7*q^4 + 5*q^5 + 5*q^6 + 3*q^7 + 2*q^8 + q^9 + q^10)
+ x^6*(1 + 5*q + 10*q^2 + 14*q^3 + 17*q^4 + 16*q^5 + 16*q^6 + 14*q^7 + 11*q^8 + 9*q^9 + 7*q^10 + 5*q^11 + 3*q^12 + 2*q^13 + q^14 + q^15) +...
where g.f.:
A(x,q) = Sum_{k=0..n*(n-1)/2, n>=0} T(n,k)*x^n*q^k
satisfies:
A(x,q) = 1 + x*A(q*x,q)*A(x,q).
This triangle of coefficients T(n,k) in A(x,q) begins:
1;
1;
1, 1;
1, 2, 1, 1;
1, 3, 3, 3, 2, 1, 1;
1, 4, 6, 7, 7, 5, 5, 3, 2, 1, 1;
1, 5, 10, 14, 17, 16, 16, 14, 11, 9, 7, 5, 3, 2, 1, 1;
1, 6, 15, 25, 35, 40, 43, 44, 40, 37, 32, 28, 22, 18, 13, 11, 7, 5, 3, 2, 1, 1;
1, 7, 21, 41, 65, 86, 102, 115, 118, 118, 113, 106, 96, 85, 73, 63, 53, 42, 34, 26, 20, 15, 11, 7, 5, 3, 2, 1, 1;
1, 8, 28, 63, 112, 167, 219, 268, 303, 326, 338, 338, 331, 314, 293, 268, 245, 215, 190, 162, 139, 116, 97, 77, 63, 48, 38, 28, 22, 15, 11, 7, 5, 3, 2, 1, 1; ...
MATHEMATICA
T[n_, k_] := Module[{P, Q},
P = Sum[q^(m^2) (-x)^m/Product[1-q^j, {j, 1, m}] + x O[x]^n, {m, 0, n}];
Q = Sum[q^(m(m-1)) (-x)^m/Product[1-q^j, {j, 1, m}] + x O[x]^n, {m, 0, n}];
SeriesCoefficient[P/Q, {x, 0, n}, {q, 0, k}]
];
Table[T[n, k], {n, 0, 10}, {k, 0, n(n-1)/2}] // Flatten (* Jean-François Alcover, Jul 27 2018, from PARI *)
PROG
(PARI) /* From g.f. A(x, q) = 1 + x*A(q*x, q)*A(x, q): */
{T(n, k)=local(A=1); for(i=1, n, A=1+x*subst(A, x, q*x)*A +x*O(x^n)); polcoeff(polcoeff(A, n, x), k, q)}
for(n=0, 10, for(k=0, n*(n-1)/2, print1(T(n, k), ", ")); print(""))
(PARI) /* By Ramanujan's continued fraction identity: */
{T(n, k)=local(P=1, Q=1);
P=sum(m=0, n, q^(m^2)*(-x)^m/prod(k=1, m, 1-q^k)+x*O(x^n));
Q=sum(m=0, n, q^(m*(m-1))*(-x)^m/prod(k=1, m, 1-q^k)+x*O(x^n));
polcoeff(polcoeff(P/Q, n, x), k, q)}
for(n=0, 10, for(k=0, n*(n-1)/2, print1(T(n, k), ", ")); print(""))
(PARI)
P(x, n) =
{
if ( n<=1, return(1) );
return( sum( i=0, n-1, P(x, i) * P(x, n-1 -i) * x^((i+1)*(n-1 -i)) ) );
}
for (n=0, 10, print( Vec( P(x, n) ) ) ); \\ Joerg Arndt, Jan 23 2024
(PARI) \\ faster with memoization:
N=11;
VP=vector(N+1); VP[1] =VP[2] = 1; \\ one-based; memoization
P(n) = VP[n+1];
for (n=2, N, VP[n+1] = sum( i=0, n-1, P(i) * P(n-1 -i) * x^((i+1)*(n-1-i)) ) );
for (n=0, N, print( Vec( P(n) ) ) ); \\ Joerg Arndt, Jan 23 2024
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Jul 15 2013
STATUS
approved