login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227540 Denominator of the rationals obtained from the e.g.f. D(1,x), a Debye function. 1
1, 4, 18, 1, 150, 1, 294, 1, 270, 1, 726, 1, 35490, 1, 90, 1, 8670, 1, 15162, 1, 6930, 1, 3174, 1, 68250, 1, 162, 1, 25230, 1, 443982, 1, 16830, 1, 210, 1, 71010030, 1, 234, 1, 554730, 1, 77658, 1, 31050, 1, 13254, 1, 2274090, 1, 3366, 1, 84270, 1, 43890, 1
(list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The numerator sequence seems to be the one of the Bernoulli numbers A027641.
D(1,x) := (1/x)*int(t/(exp(t)-1),t=0..x) which is (1/x)times the Debye function of the Abramowitz-Stegun link for n=1, is the e.g.f. for {B(k)/(k+1)}, k=0..infinity, with the Bernoulli numbers B(k) = A027641(k)/A027642(k). This follows after using the e.g.f. t/(exp(t)-1) of {B(k)} and integrating term by term (allowed for |x| <= r < rho for some small enough rho).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 998, equ. 27.1.1 for n=1, with an extra factor 1/x.
FORMULA
a(n) = denominator(B(n)/(n+1)) (in lowest terms), n >= 0. See the comment on the e.g.f. D(1,x) above.
CROSSREFS
Cf. A027641/A027642 (Bernoulli), A120082/A120083 for the rationals B(n)/(n+1)!.
Sequence in context: A132554 A077275 A059903 * A353701 A246133 A205014
KEYWORD
nonn,easy,frac
AUTHOR
Wolfdieter Lang, Jul 15 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 21:47 EDT 2024. Contains 376002 sequences. (Running on oeis4.)