The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227540 Denominator of the rationals obtained from the e.g.f. D(1,x), a Debye function. 1
 1, 4, 18, 1, 150, 1, 294, 1, 270, 1, 726, 1, 35490, 1, 90, 1, 8670, 1, 15162, 1, 6930, 1, 3174, 1, 68250, 1, 162, 1, 25230, 1, 443982, 1, 16830, 1, 210, 1, 71010030, 1, 234, 1, 554730, 1, 77658, 1, 31050, 1, 13254, 1, 2274090, 1, 3366, 1, 84270, 1, 43890, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The numerator sequence seems to be the one of the Bernoulli numbers A027641. D(1,x) := (1/x)*int(t/(exp(t)-1),t=0..x) which is (1/x)times the Debye function of the Abramowitz-Stegun link for n=1, is the e.g.f. for {B(k)/(k+1)}, k=0..infinity, with the Bernoulli numbers B(k) = A027641(k)/A027642(k). This follows after using the e.g.f. t/(exp(t)-1) of {B(k)} and integrating term by term (allowed for |x| <= r < rho for some small enough rho). LINKS Table of n, a(n) for n=0..55. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 998, equ. 27.1.1 for n=1, with an extra factor 1/x. FORMULA a(n) = denominator(B(n)/(n+1)) (in lowest terms), n >= 0. See the comment on the e.g.f. D(1,x) above. CROSSREFS Cf. A027641/A027642 (Bernoulli), A120082/A120083 for the rationals B(n)/(n+1)!. Sequence in context: A132554 A077275 A059903 * A353701 A246133 A205014 Adjacent sequences: A227537 A227538 A227539 * A227541 A227542 A227543 KEYWORD nonn,easy,frac AUTHOR Wolfdieter Lang, Jul 15 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 21:47 EDT 2024. Contains 376002 sequences. (Running on oeis4.)