|
|
A059903
|
|
Periodic part of continued fraction for sqrt(n), encoded by raising successive primes to the terms. If sqrt(n)=c0+[c1,c2,c3...] then a(n)=2^c1*3^c2*5^c3*...
|
|
1
|
|
|
1, 4, 18, 1, 16, 324, 72030, 162, 1, 64, 5832, 2916, 372027810, 10588410, 1458, 1, 256, 104976, 1036385881030500, 26244, 9421689827550, 4946387159463750, 1556496270, 13122, 1, 1024, 1889568, 2542277241000, 76256028326940, 236196
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Could be made less gigantic by omitting final terms in continued fraction, which are always 2*c0.
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
sqrt(14) = 3+[1,2,1,6] so a(14) = 2^1*3^2*5^1*7^6 = 10588410.
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|