OFFSET
0,2
COMMENTS
Numerators are found under A120082.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..447
FORMULA
a(n) = denominator(r(n)), with r(n) = [x^n]( 1 - x/4 + Sum_{k >= 0}(B(2*k)/((2*k+1)*(2*k)!))*x^(2*k) ), |x|<2*pi. B(2*k) = A000367(k)/A002445(k) (Bernoulli numbers).
a(n) = denominator(B(n)/(n+1)!), n >= 0. See the comment on the e.g.f. D(1,x) in A120082. - Wolfdieter Lang, Jul 15 2013
MATHEMATICA
Table[Denominator[BernoulliB[n]/(n+1)!], {n, 0, 50}] (* G. C. Greubel, May 01 2023 *)
PROG
(Magma) [Denominator(Bernoulli(n)/Factorial(n+1)): n in [0..50]]; // G. C. Greubel, May 01 2023
(SageMath)
def A120083(n): return denominator(bernoulli(n)/factorial(n+1))
[A120083(n) for n in range(51)] # G. C. Greubel, May 01 2023
CROSSREFS
KEYWORD
nonn,easy,frac
AUTHOR
Wolfdieter Lang, Jul 20 2006
STATUS
approved