login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120083
Denominators of expansion for Debye function for n=1: D(1,x).
10
1, 4, 36, 1, 3600, 1, 211680, 1, 10886400, 1, 526901760, 1, 16999766784000, 1, 1120863744000, 1, 181400588328960000, 1, 97072790126247936000, 1, 16860010916664115200000, 1, 324325300906011525120000, 1
OFFSET
0,2
COMMENTS
Numerators are found under A120082.
LINKS
FORMULA
a(n) = denominator(r(n)), with r(n) = [x^n]( 1 - x/4 + Sum_{k >= 0}(B(2*k)/((2*k+1)*(2*k)!))*x^(2*k) ), |x|<2*pi. B(2*k) = A000367(k)/A002445(k) (Bernoulli numbers).
a(n) = denominator(B(n)/(n+1)!), n >= 0. See the comment on the e.g.f. D(1,x) in A120082. - Wolfdieter Lang, Jul 15 2013
MATHEMATICA
Table[Denominator[BernoulliB[n]/(n+1)!], {n, 0, 50}] (* G. C. Greubel, May 01 2023 *)
PROG
(Magma) [Denominator(Bernoulli(n)/Factorial(n+1)): n in [0..50]]; // G. C. Greubel, May 01 2023
(SageMath)
def A120083(n): return denominator(bernoulli(n)/factorial(n+1))
[A120083(n) for n in range(51)] # G. C. Greubel, May 01 2023
CROSSREFS
Cf. A120082.
Sequence in context: A183882 A053426 A172282 * A110219 A174413 A162990
KEYWORD
nonn,easy,frac
AUTHOR
Wolfdieter Lang, Jul 20 2006
STATUS
approved