OFFSET
1,1
COMMENTS
The hypergeometric function 3F2([1,n+1,n+1],[n+2,n+2],z) = (n+1)^2*Li2(z)/z^(n+1) - MN(z;n)/(n!^2*z^n) for n >= 1, with Li2(z) the dilogarithm. The polynomial coefficients of MN(z;n) lead to the triangle given above.
We observe that 3F2([1,1,1],[2,2],z) = Li2(z)/z and that 3F2([1,0,0],[1,1],z) = 1.
The generating function for the EG1[3,n] coefficients of the EG1 matrix, see A162005, is GFEG1(z;m=2) = 1/(1-z)*(3*zeta(3)/2-2*z*log(2)* 3F2([1,1,1],[2,2],z) + sum((2^(1-2*n)* factorial(2*n-1)*z^(n+1)*3F2([1,n+1,n+1],[n+2,n+2],z))/(factorial(n+1)^2), n=1..infinity)).
The zeros of the MN(z;n) polynomials for larger values of n get ever closer to the unit circle and resemble the full moon, hence we propose to call the MN(z;n) the moon polynomials.
REFERENCES
Lewin, L., Polylogarithms and Associated Functions. New York, North-Holland, 1981.
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..5050 (rows 1..100 of the triangle, flattened).
Eric Weisstein's World of Mathematics, Dilogarithm.
FORMULA
a(n,m) = ((n+1)!/m)^2 for n >= 1 and 1 <= m <= n.
EXAMPLE
The first few rows of the triangle are:
[4]
[36, 9]
[576, 144, 64]
[14400, 3600, 1600, 900]
The first few MN(z;n) polynomials are:
MN(z;n=1) = 4
MN(z;n=2) = 36 + 9*z
MN(z;n=3) = 576 + 144*z + 64*z^2
MN(z;n=4) = 14400 + 3600*z + 1600*z^2 + 900*z^3
MAPLE
a := proc(n, m): ((n+1)!/m)^2 end: seq(seq(a(n, m), m=1..n), n=1..7); # Johannes W. Meijer, revised Nov 29 2012
MATHEMATICA
Table[((n+1)!/m)^2, {n, 10}, {m, n}] (* Paolo Xausa, Mar 30 2024 *)
CROSSREFS
A162995 is a scaled version of this triangle.
A001819(n)*(n+1)^2 equals the row sums for n>=1.
A001048, A052747, A052759, A052778, A052794 are related to the square root of the first five right hand columns.
A000142, A001710, A002301, A133799, A129923, A001715 are related to the square root of the first six left hand columns.
A027451(n+1) equals the denominators of M(z, n)/(n!)^2.
KEYWORD
AUTHOR
Johannes W. Meijer, Jul 21 2009
STATUS
approved